The microstructural characteristics of ion-beam-sputtered conductive SrRuO3 films, such as interfacial reactions, which govern growth behavior, defects, and thermal stability, were investigated using transmission electron microscopy. On a Si substrate, two binary constituents of SrRuO3, i.e., SrO and RuO2 were shown to have quite different reaction behaviors. The reduction of the RuO2 constituent to elemental Ru by Si led to an unstable contact of SrRuO3 on the Si substrate. Possible reaction thermodynamics are suggested, which are based on the formation energies of the corresponding reactions. In the case of films grown in an oxygen-deficient atmosphere, stacking faults were observed. The stacking faults originated from twinning on the {111}pc plane to accommodate the oxygen deficiency in the growth atmosphere by changing the arrangement of RuO6 octahedra from corner to one of face sharing.