Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T23:26:06.932Z Has data issue: false hasContentIssue false

Translucent yttrium aluminum garnet: Microwave-assisted route to synthesis and processing

Published online by Cambridge University Press:  31 January 2011

M. Panneerselvam
Affiliation:
Solid State and Structural Chemistry Unit and Materials Research Center, Indian Institute of Science, Bangalore-560012, India
G. N. Subanna
Affiliation:
Solid State and Structural Chemistry Unit and Materials Research Center, Indian Institute of Science, Bangalore-560012, India
K. J. Rao*
Affiliation:
Solid State and Structural Chemistry Unit and Materials Research Center, Indian Institute of Science, Bangalore-560012, India
*
c)Address all correspondence to this author.
Get access

Abstract

A novel and fast microwave route is described for the synthesis of yttrium aluminum garnet (YAG) and for its sintering to translucent bodies. Precursor was made by microwave decomposition (20 min) of aluminum tri-sec-butoxide and yttrium nitrate dissolved in ethyl acetate. The precursor, conventionally calcined at 1000 °C (1 h), was sintered in microwave using SiC as secondary heater for just 35 min. Resulting translucent YAG has a microhardness (HV) of 18.1 GPa and fracture toughness (KIC) of 4.3 MPa m1/2. A 0.86-mm-thick sintered pellet exhibits approximately 45% transmission for 520-nm radiation. The entire microwave process requires less than 3 h.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Geusic, J.E., Marcos, H.M., and Van, L.G. Uitert, Appl. Phys. Lett. 24, 182 (1964).CrossRefGoogle Scholar
2Cockayne, B., J. Less-Common. Met. 114, 199 (1985).CrossRefGoogle Scholar
3Parthasarathy, T.A., Mah, T.I., and Keller, K., J. Am. Ceram. Soc. 75, 1756 (1992).CrossRefGoogle Scholar
4Corman, G.S., J. Mater. Sci. Lett. 12, 379 (1993).CrossRefGoogle Scholar
5Sim, S.M., Keller, K.A., and Mah, T.I., J. Mater. Sci. 35, 713 (2000).CrossRefGoogle Scholar
6Li, J.G., Ikegami, T., Lee, J.H., and Mori, T., J. Am. Ceram. Soc. 83, 961 (2000).CrossRefGoogle Scholar
7Cinibulk, M.K., J. Am. Ceram. Soc. 83, 1276 (2000).CrossRefGoogle Scholar
8Manalert, R. and Rahaman, M.H., J. Mater. Sci. 31, 3453 (1996).CrossRefGoogle Scholar
9de, G. With and van Dijk, H.J.A., Mater. Res. Bull. 19, 1669 (1984).CrossRefGoogle Scholar
10Li, J.G., Ikegami, T., Lee, J.H., and Mori, T., J. Am. Ceram. Soc. 83, 961 (2000).CrossRefGoogle Scholar
11Rao, K.J., Vaidhyanathan, B., Ganguli, M., and Ramakrishnan, P.A., Chem. Mater. 11, 882 (1999).CrossRefGoogle Scholar
12Ramesh, P.D. and Rao, K.J., Adv. Mater. 7, 177 (1993).CrossRefGoogle Scholar
13Panneerselvam, M. and Rao, K.J., Adv. Mater. 12, 1621 (2000).3.0.CO;2-X>CrossRefGoogle Scholar
14Sutton, W.H., Am. Ceram. Soc. Bull. 68, 376 (1989).Google Scholar
15Mingos, D.M.P. and Baghurst, D.R., Chem. Soc. Rev. 20, 1 (1991).CrossRefGoogle Scholar
16Baghurst, D.R., Chippindale, A.M., and Mingos, D.M.P., Nature 332, 311 (1988).CrossRefGoogle Scholar
17Booske, J.H., Cooper, R.F., and Freeman, S.A., Phys. Rev. Lett. 74, 2042 (1995).Google Scholar
18Ravi, B.G., Ramesh, P.D., Gupta, N., and Rao, K.J., J. Mater. Chem. 7, 2043 (1997).CrossRefGoogle Scholar
19Warshaw, I. and Roy, R., J. Am. Ceram. Soc. 42, 434 (1959).CrossRefGoogle Scholar
20Abell, J.S., Harris, I.R., Cockayne, B., and Lent, B., J. Mater. Sci. 9, 527 (1974).CrossRefGoogle Scholar
21Gowda, G., J. Mater. Sci. Lett.5, 1029 (1986).Google Scholar
22Kingsley, J.J., Suresh, K., and Patil, K.C., J. Solid State Chem. 87, 435 (1990).CrossRefGoogle Scholar
23Inoue, M., Otsu, H., Kominami, H., and Inui, T., J. Am. Ceram. Soc. 74, 1452 (1997).CrossRefGoogle Scholar
24Pillai, K.T., Kamat, R.V., Vaidya, V.N., and Sood, D.D., Mater. Chem. Phys. 44, 25 (1996).CrossRefGoogle Scholar
25Rao, C.N.R., Chemical applications of infrared spectroscopy (Academic Press, New York, 1963), p. 352.Google Scholar
26Krupka, J., Derzakowski, K., Tobar, M., Hartnett, J., and Geyer, R.G., Meas. Sci. Technol. 10, 387 (1999).CrossRefGoogle Scholar
27de With, G., High Tech Ceramics, edited by P. Vincenzini (Elsevier Science, Amsterdam, The Netherlands, 1981), pp. 20632075.Google Scholar