A family of lanthanide silicates adopts an oxyapatitelike structure with structural formula Ln9.33 0.67(SiO4)6O2 (Ln = La, Sm, Nd, Gd, = vacancy). The enthalpies of solution, ΔHS, for these materials and their corresponding binary oxides were determined by high-temperature oxide melt solution calorimetry using molten 2PbO B2O3 at 1078 K. These data were used to complete thermodynamic cycles to calculate enthalpies of formation from the oxides, ΔH0 f-oxides (kJ/mol): La9.33 0.67(SiO4)6O2 = 776.3 ± 17.9, Nd9.33 0.67(SiO4)6O2 = 760.4 ± 31.9, Sm9.33 0.67(SiO4)6O2 = 590.3 ± 18.6, and Gd9.33 0.67(SiO4)6O2 = 446.9 ± 21.9. Reference data were used to calculate the standard enthalpies of formation from the elements, ΔH0 f (kJ/mol): La9.33 0.67(SiO4)6O2 = 14611.0 ± 19.4, Nd9.33 0.67(SiO4)6O2 = 14661.5 ± 32.2, Sm9.33 0.67(SiO4)6O2 = -14561.7 ±; 20.8, and Gd9.33 0.67(SiO4)6O2 = -14402.7 ± 28.2. The formation enthalpies become more endothermic as the ionic radius of the lanthanide ion decreases.