Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T00:28:35.149Z Has data issue: false hasContentIssue false

Comparison of citrate–nitrate gel combustion and precursor plasma spray processes for the synthesis of yttrium aluminum garnet

Published online by Cambridge University Press:  31 January 2011

P. Sujatha Devi*
Affiliation:
Center for Thermal Spray Research, Department of Materials Science and Engineering, State University of New York, Stony Brook, New York 11794–2275
Yongjae Lee
Affiliation:
Department of Geosciences, State University of New York, Stony Brook, New York 11794–2275
Joshua Margolis
Affiliation:
Center for Thermal Spray Research, Department of Materials Science and Engineering, State University of New York, Stony Brook, New York 11794–2275
John B. Parise
Affiliation:
Center for Thermal Spray Research, Department of Materials Science and Engineering, Department of Geosciences, and Department of Chemistry, State University of New York, Stony Brook, New York 11794–2275
Sanjay Sampath
Affiliation:
Center for Thermal Spray Research, Department of Materials Science and Engineering, State University of New York, Stony Brook, New York 11794–2275
Herbert Herman
Affiliation:
Center for Thermal Spray Research, Department of Materials Science and Engineering, State University of New York, Stony Brook, New York 11794–2275
Jonathan C. Hanson
Affiliation:
Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973
*
a) Address all correspondence to this author.
Get access

Abstract

The influence of synthesis conditions on the formation of yttrium aluminum garnet (YAG) powders starting from the same solution precursors was investigated by employing a citrate–nitrate gel combustion process and a precursor plasma spraying technique. YAG powders were formed at ≥500 °C, through the citrate–nitrate gel combustion process, without any intermediate phase formation. Time-resolved x-ray experiments were performed for the first time on these citrate–nitrate precursor materials to understand their mode of decomposition. The in situ data confirmed a single-step conversion to YAG from the precursor powder without any intermediate phase formation. Ex situ experiments also produced similar results. However, the use of the same citrate–nitrate precursor solution as a liquid feedstock material in the precursor plasma spraying technique revealed an entirely different transformation mechanism to YAG through intermediate phases like H–YalO3 and O–YalO3.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Abell, J.S., Harris, I.R., Cockayne, B., and Lent, B., J. Mater. Sci. Lett. 9, 527 (1974).Google Scholar
2.Corman, G.S., Ceram. Eng. Sci. Proc. 12, 1745 (1991).CrossRefGoogle Scholar
3.Parthasarathy, T.A., Mah, T., and Keller, K., Ceram. Eng. Sci. Proc. 12, 1767 (1991).CrossRefGoogle Scholar
4.Yan, M.F., Huo, T.C.D., and Ling, H.C., J. Electrochem. Soc. 134, 493 (1987).CrossRefGoogle Scholar
5.Gowda, G., J. Mater. Sci. Lett. 5, 1029 (1986).CrossRefGoogle Scholar
6.Veith, M., Mathur, S., Kareiva, A., Jilavi, M., Zimmer, M., and Huch, V., J. Mater. Chem. 79, 385 (2000).Google Scholar
7.Inone, M., Otsu, H., Kominami, H., and Insui, T., J. Am. Ceram. Soc. 74, 1452 (1991).CrossRefGoogle Scholar
8.Kamat, R.V., Pillai, K.T., Vaidya, V.N., and Sood, D.D., Mater. Chem. Phys. 46, 67 (1998).CrossRefGoogle Scholar
9.Liu, Y., Zhang, Z.F., King, B., Halloran, J., and Laine, R.M., J. Am. Ceram. Soc. 79, 385 (1996).CrossRefGoogle Scholar
10.Cinibulk, M.K., J. Am. Ceram. Soc. 83, 1276 (2000).CrossRefGoogle Scholar
11.Li, J.G., Ikegami, T., Lee, J.H., and Mori, T., J. Mater. Res. 15, 1515 (2000).Google Scholar
12.Lu, Q., Dong, W., Wang, H., and Wang, X., J. Am. Ceram. Soc. 85, 490 (2002).CrossRefGoogle Scholar
13.Wang, H., Gao, L., and Niihara, K., Mater. Sci. Eng. A 288 (2000).CrossRefGoogle Scholar
14.Nyman, M., Caruso, J., Smith, M.H., and Kodas, T.T., J. Am. Ceram. Soc. 80, 1231 (1997).CrossRefGoogle Scholar
15.Iida, Y., Towata, A., Tsugoshi, T., and Furukawa, M., Vib. Spectrosc. 19, 399 (1999).CrossRefGoogle Scholar
16.Parukuttyamma, S.D., Margolis, J., Liu, H., Grey, C.P., Sampath, S., Herman, H., and Parise, J.B., J. Am. Ceram. Soc. 84, 1906 (2001).CrossRefGoogle Scholar
17.Devi, P.S. and Maiti, H.S., J. Mater. Res. 9, 1357 (1994).CrossRefGoogle Scholar
18.Chakraborty, A., Devi, P.S., Roy, S., and Maiti, H.S., J. Mater. Res. 9, 986 (1994).CrossRefGoogle Scholar
19.Chakraborty, A., Devi, P.S., and Maiti, H.S., J. Mater. Res. 10, 918 (1995).CrossRefGoogle Scholar
20.Yue, Z., Li, L., Zhou, J., Zhang, H., and Gui, Z., Mater. Sci. Eng. B64, 68 (1999).CrossRefGoogle Scholar
21.Karthikeyan, J., Berndt, C.C., Reddy, S., Wang, J.Y., King, A.H., and Herman, H., J. Am. Ceram. Soc. 81, 121 (1998).CrossRefGoogle Scholar
22.Hammersely, A.P., ESRF internal report, ESRF97HA02TFIT2D (1997).Google Scholar
23.Hammersely, A.P., Svensson, S.O., and Thompson, A., Nucl. Instrum. Methods A345, 312 (1994).CrossRefGoogle Scholar
24. Powder Diffraction File No. 33-40, International Centre for Diffraction Data, Newton Square, PA.Google Scholar
25. Powder Diffraction File No. 16-219, International Centre for Diffraction Data, Newton Square, PA.Google Scholar
26.Kinsman, K.M. and Mc, J.Kittrick, J. Am. Ceram. Soc. 77, 2866 (1994).CrossRefGoogle Scholar
27.Roy, S., Wang, L., Sigmund, W., and Aldinger, F., Mater. Lett. 39, 138 (1999).CrossRefGoogle Scholar