Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-02T18:57:06.288Z Has data issue: false hasContentIssue false

Control of crystallization and crystal orientation of alkoxy-derived SrBi2Ta2O9 thin films by ultraviolet irradiation

Published online by Cambridge University Press:  06 January 2012

Kaori Nishizawa
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), 2266–98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya, 463–8560, Japan
Takeshi Miki
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), 2266–98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya, 463–8560, Japan
Kazuyuki Suzuki
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), 2266–98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya, 463–8560, Japan
Kazumi Kato
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), 2266–98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya, 463–8560, Japan
Get access

Abstract

A 650 °C annealed thin film was found to be a single phase of SrBi2Ta2O9 (SBT) and showed the c-axis orientation without ultraviolet irradiation. The crystallinity and crystal orientation of the thin films were improved by ultraviolet irradiation using an ultrahigh-pressure mercury lamp (UHPML) or a low-pressure mercury lamp (LPML) under three conditions. In particular, the crystal orientation of the 650 °C annealed thin films dramatically changed by ultraviolet irradiation using a LPML at room temperature or using an UHPML at 150 °C. The 650 °C annealed SBT thin film prepared by ultraviolet irradiation using an UHPML at 150 °C showed a remanent polarization (Pr) of 4.3 μC/cm2 and a coercive electric field (Ec) of 101 kV/cm at 10 V.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Araujo, C.A. Paz de, Cuchiaro, J.D., McMillan, L.D., Scott, M.C., and Scott, J.F., Nature 374, 627 (1995).CrossRefGoogle Scholar
Sumi, T., Moriwaki, N., Nakane, G., Nakamura, T., Judai, Y., Uemoto, Y., Nagano, Y., Hayashi, S., Azuma, M., Otsuki, T., Kano, G., Cuchiaro, J.D., Scott, M.C., McMillan, L.D., and Araujo, C.A. Paz de, Integr. Ferroelectr. 6, 1 (1995).CrossRefGoogle Scholar
Amanuma, K., Hase, T., and Miyasaka, Y., Appl. Phys. Lett. 66, 221 (1995).CrossRefGoogle Scholar
Taylor, D.J., Jones, R.E., Zucher, P., Chu, P., Lii, Y.T., Jiang, B., Gillespie, S.J., Appl. Phys. Lett. 68, 2300 (1996).CrossRefGoogle Scholar
Scott, J.F., Ross, F.M., Araujo, C.A. Paz de, Scott, M.C., and Huffman, M., MRS Bull. 21(7), 33 (1996).CrossRefGoogle Scholar
Al-Shareef, H.N., Dimos, D., Boyle, T.J., Warren, W.L., and Tuttle, B.A., Appl. Phys. Lett. 68, 690 (1996).CrossRefGoogle Scholar
Dimos, D., Al-Shareef, H.N., Warren, W.L., Tuttle, B.A., J. Appl. Phys. 80, 1682 (1996).CrossRefGoogle Scholar
Noguchi, T., Hase, T., and Miyasaka, Y., Jpn. J. Appl. Phys. 35, 4900 (1996).CrossRefGoogle Scholar
Ito, Y., Ushikubo, M., Yokoyama, S., Matsunaga, H., Atsuki, T., Yonezawa, T., and Ogi, K., Jpn. J. Appl. Phys. 35, 4925 (1996).CrossRefGoogle Scholar
Hayashi, T., Takahashi, H., and Hara, T., Jpn. J. Appl. Phys. 35, 4952 (1996).CrossRefGoogle Scholar
Hayashi, T. and Togawa, D., Jpn. J. Appl. Phys. 40, 5585 (2001).CrossRefGoogle Scholar
Imai, H., Tominaga, A., and Hirashima, H., J. Appl. Phys. 85, 203 (1999).CrossRefGoogle Scholar
Tsuchiya, T., Watanabe, A., Imai, Y., Niino, H., and Yamaguchi, I., Jpn. J. Appl. Phys. 38, L823 (1999).CrossRefGoogle Scholar
Nishizawa, K., Miki, T., Suzuki, K., and Kato, K., Mater. Lett. 52, 20 (2002).CrossRefGoogle Scholar
Kato, K., Zheng, C., Finder, J.M., Dey, S.K., and Torii, Y., J. Am. Ceram. Soc. 81, 1869 (1998).CrossRefGoogle Scholar
Nyquist, R.A. and Kagel, R.O., Handbook of Infrared and Raman Spectra of Inorganic Compounds and Organic Salts (Academic Press, San Diego, CA, 1997).Google Scholar
Bradley, D.C., Mehrotra, R.C., and Gaur, D.P., Metal Alkoxides (Academic Press, San Diego, CA, 1978), p. 116.Google Scholar
Pires, A.M. and Davolos, M.R., Chem. Mater. 13, 21 (2001).CrossRefGoogle Scholar
Gatehouse, B.M., Livingstone, S.E., and Nyholm, R.S., J. Chem. Soc. 3137 (1958).Google Scholar
Hartmann, A.J., Lamb, R.N., Scott, J.F., and Gutleben, C.D., Integ. Ferroelectr. 18, 101 (1997).CrossRefGoogle Scholar
Lenzmann, F., Shklover, V., Brooks, K., and Gratzel, M., J. Sol-Gel. Sci. Technol. 19, 175 (2000).CrossRefGoogle Scholar
Matsuda, A., Matsuno, Y., Tatsumisago, M., and Minami, T., J. Ceram. Soc. Japan. 108, 604 (2000).CrossRefGoogle Scholar
Li, B., Koch, F., and Chu, L., Appl. Phys. Lett. 78, 1107 (2001).CrossRefGoogle Scholar
Chuang, T.J., Surf. Sci. Rep. 3, 1 (1983).CrossRefGoogle Scholar
Ying, Z. and Ho, W., Phys. Rev. Lett. 60, 57 (1988).CrossRefGoogle Scholar
Gluck, N.S., Ying, Z., Bartosch, C.E., and Ho, W., J. Chem. Phys. 86, 4957 (1987).CrossRefGoogle Scholar
Domen, K. and Chuang, T.J., Phys. Rev. Lett. 59, 1484 (1987).CrossRefGoogle Scholar
Costello, S.A., Roop, B., Liu, Z.M., and White, J.M., J. Phys. Chem. 92, 1019 (1988).CrossRefGoogle Scholar
Marsh, E.P., Gilton, T.L., Meier, W., Schneider, M.R., and Cowin, J.P., Phy. Rev. Lett. 61, 2725 (1988).CrossRefGoogle Scholar