Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T02:28:31.355Z Has data issue: false hasContentIssue false

Crystallization of Cu60Ti20Zr20 metallic glass with and without pressure

Published online by Cambridge University Press:  06 January 2012

J. Z. Jiang
Affiliation:
Department of Physics, Building 307, Technical University of Denmark, DK-2800 Lyngby, Denmark
B. Yang
Affiliation:
Department of Physics, Building 307, Technical University of Denmark, DK-2800 Lyngby, Denmark
K. Saksl
Affiliation:
HASYLAB am DESY, Notkestrasse 85, D-22603 Hamburg, Germany
H. Franz
Affiliation:
HASYLAB am DESY, Notkestrasse 85, D-22603 Hamburg, Germany
N. Pryds
Affiliation:
Materials Research Department, Risø National Laboratory, DK-4000 Roskilde, Denmark
Get access

Abstract

Structural stability of a Cu60Ti20Zr20 metallic glass under pressure up to 4.5 GPa was investigated by x-ray diffraction. The sample exhibited a supercooled liquid region of 33 K and a ratio of the glass-transition temperature to the liquidus temperature of 0.63. The glass crystallized in two-step transformation processes in the pressure range of 0–4.5 GPa; the first was a primary reaction to form a Cu51Zr14-type structure crystalline phase with a spacing group P6/m (175) and lattice parameters a=11.235 Å and c=8.271 Å, and then the residual amorphous phase crystallized into a MgZn2-type structure crystalline phase with a spacing group P63/mmc (194) and lattice parameters a=5.105 Å and c=8.231 Å. Both crystallization temperatures increased with pressure having a slope of 19 K/GPa. The increase of the first crystallization temperature with increasing pressure in the glass can be explained by the suppression of atomic mobility. No significant structural change was detected in the Cu60Ti20Zr20 glass annealed in vacuum at 697 K for 1 h as compared to the as-prepared sample from x-ray diffraction measurements.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chen, H.S., Acta Metall. 22, 1505 (1974); A.J. Drehman, A.L. Greer, and D. Turnbull, Appl. Phys. Lett. 41, 716 (1982);CrossRefGoogle Scholar
Kui, H.W., Greer, A.L., and Turnbull, D., Appl. Phys. Lett. 45, 615 (1984); A. Inoue, N. Nishiyama, and T. Watsuda, Mater. Trans. JIM 37, 181 (1996).CrossRefGoogle Scholar
Lee, M.C., Kendall, J.M., and Johnson, W.L., Appl. Phys. Lett. 40, 383 (1982).Google Scholar
Inoue, A., Zhang, T., and Masumoto, T., Mater. Trans. JIM 30, 965 (1989).CrossRefGoogle Scholar
Inoue, A., Kato, A., Zhang, T., Kim, S.G., and Masumoto, T., Mater. Trans. JIM 32, 609 (1991).Google Scholar
Inoue, A., Zhang, T., and Masumoto, T., Mater. Trans. JIM 31, 177 (1990).CrossRefGoogle Scholar
Peker, A. and Johnson, W.L., Appl. Phys. Lett. 63, 2342 (1993).CrossRefGoogle Scholar
Inoue, A., Zhang, T., Nishiyama, N., Ohba, K., and Masumoto, T., Mater. Lett. 19, 131 (1994).CrossRefGoogle Scholar
Inoue, A. and Gook, G.S., Mater. Trans. JIM 36, 1180 (1995).CrossRefGoogle Scholar
Wang, X.M. and Inoue, A., Mater. Trans. JIM 41, 539 (2000).CrossRefGoogle Scholar
Itoi, T. and Inoue, A., Mater. Trans. JIM 41, 1256 (1999).CrossRefGoogle Scholar
Inoue, A., Zhang, W., Zhang, T., and Kurosaka, K., Mater. Trans. JIM 42, 1149 (2001).CrossRefGoogle Scholar
Inoue, A., Zhang, W., Zhang, T., and Kurosaka, K., Acta Mater. 49, 2645 (2001).CrossRefGoogle Scholar
Jiang, J.Z., Olsen, J.S., Gerward, L., Abdali, S., Eckert, J., Boer, N. Schlorke-de, Schultz, L., Truckenbrodt, J., and Shi, P.X., J. Appl. Phys. 87, 2664 (2000).CrossRefGoogle Scholar
Decker, D.L., J. Appl. Phys. 42, 3239 (1971).Google Scholar
Liu, X.D., Nagumo, M., and Umemoto, M., Mater. Sci. Eng. A 252, 179 (1998).CrossRefGoogle Scholar
Hays, C.C. and Glade, S.C., Appl. Phys. Lett. 80(10), 3096 (2002).CrossRefGoogle Scholar
For example, see Johnson, W.L., MRS Bulletin 24, 42 (1999).Google Scholar
Jiang, J.Z., Zhou, T.J., Rasmussen, H.K., Kuhn, U., Eckert, J., and Lathe, C., Appl. Phys. Lett. 77, 3553 (2000).Google Scholar
Linderoth, S., Pryds, N., Eldrup, M., Pedersen, A.S., Ohnuma, M., Zhou, , Gerward, L., Jiang, J.Z., and Lathe, C., in Supercooled Liquid, Bulk Glassy and Nanocrystalline States of Alloys, edited by Inoue, A., Yavari, A.R., Johnson, W.L., and Dauskardt, R.H. (Mater. Res. Soc. Symp. Proc. 644, Warrendale, PA, 2001), L4.1.1.Google Scholar
Jiang, J.Z., Zhuang, Y.X., Rasmussen, H.K., Nishiyama, N., Inoue, A., and Lathe, C., Europhys. Lett. 54, 182 (2001).CrossRefGoogle Scholar
Jiang, J.Z., Saksl, K., Nishiyama, N., and Inoue, A., J. Appl. Phys. 92, 3651 (2002).CrossRefGoogle Scholar
Jiang, J.Z., Gerward, L., and Xu, Y.S., Appl. Phys. Lett. 81, 4347 (2002).CrossRefGoogle Scholar