Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-14T05:55:42.219Z Has data issue: false hasContentIssue false

Dependence of Faraday effect on the orientation of terbium–scandium–aluminum garnet single crystal

Published online by Cambridge University Press:  03 March 2011

Y. Kagamitani*
Affiliation:
Physical Chemistry of Luminescent Materials, Claude Bernard/Lyon University, CNRS UMR 5620, Villeurbanne, Cedex 69622, France
D.A. Pawlak
Affiliation:
Institute of Electronic Materials Technology, Wólczyñska 133, 01-919 Warsaw, Poland
H. Sato
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
A. Yoshikawa
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
J. Martinek
Affiliation:
Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznan, Poland; and Institut für Theoretische Festköperphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany
H. Machida
Affiliation:
Tokin Co., 28-1 Hanashimashinden, Tsukuba, Ibaraki 305-0875, Japan
T. Fukuda
Affiliation:
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
*
a)Address all correspondence to this author. e-mail: kagamitani@pcml.univ-lyon1.fr
Get access

Abstract

To investigate the directional dependence of the Faraday effect in terbium–scandium–aluminum garnet (TSAG) single crystals, grown by the Czochralski method, the Verdet constant was measured at 〈111〉, 〈110〉, and 〈100〉 orientations. Extinction ratio and magnetic susceptibility were measured. From the linear dependence of the Verdet constant and inverse wavelength square 1/λ2, 〈111〉 direction shows the highest value of Verdet constant (for λ = 649.1 nm, Vav = 8.256 × 10−3 deg · Oe−1 · cm−1). Significant anisotropy of magnetic susceptibility was not observed. The extinction ratio of TSAG shows the highest value for 〈111〉 orientation 38.7 dB, which implies that it can be used as an optical isolator.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Barthélémy, M. and Bergman, D.J.: Phys. Rev. B 58 12770 (1998).CrossRefGoogle Scholar
2Landau, L. and Lifshitz, E.Electrodynamics of Continous Media, Course of Theoretical Physics Vol. (Addison-Wesley, Reading, MA, 1960).Google Scholar
3Dentz, D.I., Puttbach, R.C. and Belt, R.R.: Proc. AIP Conf. 18 954 (1974).Google Scholar
4Rubinstein, C.B., Van Utert, L.G. and Grodkiewicz, W.H.: J. Appl. Phys. 35 3069 (1964).CrossRefGoogle Scholar
5Ganschow, S., Klimm, D., Reiche, P. and Uecker, R.: Cryst. Res. Technol. 34 615 (1999).3.0.CO;2-C>CrossRefGoogle Scholar
6Chani, V.I., Yoshikawa, A., Machida, H. and Fukuda, T.: Mater. Sci. Eng. B 75 53 (2000).CrossRefGoogle Scholar
7Chani, V.I., Yoshikawa, A., Machida, H. and Fukuda, T.: J. Cryst. Growth 212 469 (2000).CrossRefGoogle Scholar
8Pawlak, D.A., Kagamitani, Y., Yoshikawa, A., Wozniak, K., Sato, H., Machida, H. and Fukuda, T.J. Cryst. Growth 226 341 (2001).CrossRefGoogle Scholar
9Brandle, C.D. and Barns, R.L.: J. Cryst. Growth 20 1 (1973).CrossRefGoogle Scholar
10Yoshikawa, A., Kagamitani, Y., Pawlak, D.A., Sato, H., Machida, H. and Fukuda, T.: Mater. Res. Bull. 37 1 (2002).CrossRefGoogle Scholar
11Fujita, J., Levy, M.Osgood, R.M. JrWilkens, L. and Dötsch, H.Appl. Phys. Lett. 76 2158 (2000).CrossRefGoogle Scholar
12Guerrero, H., Rosa, G., Morales, M.P., del Monte, F., Moreno, E.M., Levy, D., del Real, R. Pérez, Belenguer, T. and Serna, C.J.: Appl. Phys. Lett. 71 2698 (1997).CrossRefGoogle Scholar
13Inoue, M., Arai, K., Fujii, T. and Abe, M.: J. Appl. Phys. 83 6768 (1998).CrossRefGoogle Scholar
14Inoue, M., Arai, K., Fujii, T. and Abe, M.: J. Appl. Phys. 85 5768 (1999).CrossRefGoogle Scholar
15Steel, M.J., Levy, M. and Osgood, R.M. Jr: J. Lightwave Technol. 18 1297 (2000).CrossRefGoogle Scholar
16Steel, M.J., Levy, M. and Osgood, R.M. Jr: J. Lightwave Technol. 12 1171 (2000).Google Scholar
17Pawlak, D.A., Lerondel, G., Dmytruk, I., Kagamitani, Y., Durbin, S., Royer, P. and Fukuda, T.: J. Appl. Phys. 91 9731 (2002).CrossRefGoogle Scholar
18Vosegaard, T., Byriel, I.P., Pawlak, D.A., Wozniak, K. and Jakobsen, H.J.: J. Am. Chem. Soc. 120 7900 (1998).CrossRefGoogle Scholar
19Zvezdin, A.K. and Latov, V.A.Modern Magnetooptics and Magnetooptical Materials (Institute of Physics Publishing, Bristol and Philadelphia, 1997), p. 92.CrossRefGoogle Scholar
20Valiev, U.V., Klochkov, A.A., Sokolov, B. Yu., Tugushev, R I. and Hasanov, E.G.Opt. Spectrosk. 64 1192 (1987).Google Scholar
21Valiev, U.V., Krinchik, G.S., Levitin, R.Z. and Sokolov, B.Yu.: Fiz. Tverd. Tela 27 233 (1985).Google Scholar
22Valiev, U.V., Krinchik, G.S., Levitin, R.Z., Sokolov, B.Yu., Tugrganov, M.M.Fiz. Opt. Spectrosk. 58 1375 (1985).Google Scholar
23Valiev, U.V. and Popov, A.I.: Fiz. Tverd. Tela 27 2729 (1985).Google Scholar
24Valiev, U.V., Zvezdin, A.K., Krinchik, G.S., Levitin, R.Z., Mukimov, K.M. and Popov, A.I.: Sov. Phys.-JETP 58 181 (1983).Google Scholar
25Valiev, U.V., Krinchik, G.S., Kruglyashov, S.B., Levitin, R.Z., Mukimov, V.N., Orlov, V.N. and Sokolov, B.Yu.: Sov. Phys. Solid State 24 1596 (1982).Google Scholar
26Dong, J. and Lu, K.: Phys. Rev. B 43 8808 (1990).CrossRefGoogle Scholar
27Chenevas, J., Joubert, J.C. and Marezio, M.: J. Less-Common Met. 62 373 (1978).CrossRefGoogle Scholar