Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T15:24:58.401Z Has data issue: false hasContentIssue false

Effect of oxygen on the reactions in the Si/Ta/Cu metallization system

Published online by Cambridge University Press:  31 January 2011

Tomi Laurila
Affiliation:
Laboratory of Electronics Production Technology, Helsinki University of Technology, P.O. Box 3000, Espoo, FIN-02015 HUT, Finland
Kejun Zeng
Affiliation:
Laboratory of Electronics Production Technology, Helsinki University of Technology, P.O. Box 3000, Espoo, FIN-02015 HUT, Finland
Jorma K. Kivilahti
Affiliation:
Laboratory of Electronics Production Technology, Helsinki University of Technology, P.O. Box 3000, Espoo, FIN-02015 HUT, Finland
Jyriki Molarius
Affiliation:
VTT Microelectronics, FIN-02044 VTT, Espoo, Finland
Ilkka Suni
Affiliation:
VTT Microelectronics, FIN-02044 VTT, Espoo, Finland
Get access

Abstract

The effect of oxygen on the reaction mechanisms in the Si/Ta/Cu metallization system was studied experimentally and by utilizing the thermodynamically assessed Ta–O binary system. It was presented that an interfacial tantalum oxide was formed between Cu and Ta and that it established an additional barrier layer for Cu diffusion. The formation of additional barrier layer was supported by the following observations: (i) No detectable amount of Cu was found from the Ta layer with the combined transmission electron microscopy and energy dispersive spectroscopy at temperatures as high as 650 °C. (ii) Secondary ion mass spectrometry measurements indicated that significant amount of oxygen was incorporated into the films already after the sputtering stage. (iii) 181Ta16O molecular ion signals were detected from the Ta/Cu interface, indicating that the additional layer was in fact some form of tantalum oxide. The diffusion of Cu through the Ta layer could not proceed until the interfacial oxide had been dissolved by the Ta matrix. Since the oxygen solubility in Ta matrix is high in the temperature range of interest, the interfacial oxide dissolution was kinetically controlled. It is to be noted that the threshold temperature range of the dissolution reaction was found to coincide with that of the β–Ta to the bcc-Ta transition, which was anticipated to enhance the kinetics of the dissolution.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Rohrer, N., Akrout, C., Canada, M., Cawthron, D., Davari, B., Floyd, R., Geissler, S., Goldblatt, R., Houle, R., and Kartschoke, P., Digest of Technical Papers—IEEE International Solid-State Cir-cuits Conference Proceedings of the 1998 IEEE 45th Interna-tional Solid-State Circuits Conference (IEEE, Piscataway, NJ, 1998), pp. 240241.Google Scholar
2Ichikawa, T., Takeyama, M., and Noya, A., Jpn. J. Appl. Phys. 35, 1844 (1996).CrossRefGoogle Scholar
3Holloway, K. and Fryer, P., Appl. Phys. Lett. 57, 1736 (1990).Google Scholar
4Holloway, K., Fryer, P., Cabral, C., Harper, J., Bailey, P., and Kelleher, K., J. Appl. Phys. 71, 5433 (1992).CrossRefGoogle Scholar
5Olowolafe, J., Mogab, C., and Gregory, R., Thin Solid Films 227, 37 (1993).CrossRefGoogle Scholar
6Kang, B-S., Lee, S-M., Kwak, J., Yoon, D-S., and Baik, H-K., J. Electrochem. Soc. 144, 1807 (1997).Google Scholar
7Stavrev, M., Fischer, D., Preuss, A., Wentzel, C., and Mattern, N., Microelectron. Eng. 33, 269 (1997).Google Scholar
8Yoon, D-S., Baik, H-K., and Lee, S-M., J. Appl. Phys. 83, 1333 (1998).CrossRefGoogle Scholar
9Clevenger, L., Bojarczuk, N., Holloway, K., Harper, J., Cabral, C., Schad, R., Cardone, F., and Stolt, L., J. Appl. Phys. 73, 300 (1993).CrossRefGoogle Scholar
10Laurila, T., Zeng, K., Molarius, J., Suni, I., and Kivilahti, J.K., J. Appl. Phys. 88, 3377 (2000).Google Scholar
11Bernardini, J., Gas, P., Hondros, E.D., and Seah, M.P., Proc. R. Soc. London A379, 159 (1982).Google Scholar
12Paulasto, M. and Kivilahti, J.K., J. Mater. Res. 13, 243 (1998).CrossRefGoogle Scholar
13Chen, L., Magtoto, N., Ekstrom, B., and Kelber, J., Thin Solid Films 376, 115 (2000).CrossRefGoogle Scholar
14Yin, K-M., Chang, L., Chen, F-R., Kai, J-J., Chiang, C-C., Ding, P., Chin, B., Zhang, H., and Chen, F., Thin Solid Films 388, 15 (2001).Google Scholar
15Yin, K-M., Chang, L., Chen, F-R., Kai, J-J., Chiang, C-C., Chuang, G., Ding, P., Chin, B., Zhang, H., and Chen, F., Thin Solid Films 388, 27 (2001).CrossRefGoogle Scholar
16Kubaschewski, O. and Hopkins, B., Oxidation of Metals and Alloys (Butterworths, London, United Kingdom, 1967).Google Scholar
17Shewmon, P., Diffusion in Solids (TMS, Warrendale, PA, 1989), p. 31.Google Scholar
18Williams, P. and Baker, J.E., Nucl. Instrum. Methods 182/183, 183 (1981).Google Scholar
19Wilson, R.G., Stevie, F.A., and Magee, C.W., Secondary Ion Mass Spectrometry (John Wiley & Sons, New York, 1989).Google Scholar
20Kaufman, L. and Bernstein, H., Computer Calculation of Phase Diagrams (Academic Press, New York, 1970).Google Scholar
21Ansara, I., Pure Appl. Chem. 62, 71 (1990).Google Scholar
22Darken, L. and Gurry, R., Physical Chemistry of Solids (McGraw-Hill, Tokyo, Japan, 1953).Google Scholar
23Fromm, E. and Gebhardt, E., Gas and Carbon in Metals (Springer-Verlag, Berlin, Germany, 1976).Google Scholar
24LeClaire, A.D., in Diffusion in Solid Metals and Alloys, edited by Mehrer, H., Landolt-Börnstein, , Vol. 26 (Springer-Verlag, Berlin, Germany, 1990).Google Scholar
25Massalski, T.B., Binary Alloy Phase Diagrams (ASM Interna-tional, Materials Park, OH, 1996).Google Scholar
26Kingery, W., Bowen, H., and Uhlmann, D., Introduction to Ceram-ics (John Wiley & Sons, New York, 1976).Google Scholar
27Gaskell, D.R., Introduction to Metallurgical Thermodynamics (McGraw-Hill, New York, 1973).Google Scholar
28Lee, H-J., Kwon, K-W., Ryu, C., and Sinclair, R., Acta Mater. 47, 3965 (1999).Google Scholar
29Cros, A. and Tu, K.N., J. Appl. Phys. 60, 3323 (1986).CrossRefGoogle Scholar
30Kofstad, P., J. Phys. Chem. Solids 28, 1842 (1967).Google Scholar
31Giber, J. and Oechsner, H., Thin Solid Films 131, 279 (1985).Google Scholar
32Bilello, J.C. and Yalisove, S.M., in Polycrystalline Metal and Mag-netic Thin Films, edited by Gignoc, L., Thomas, O., MacLaren, J., and Clemens, B. (Mater. Res. Soc. Symp. Proc., 615, Warrendale, PA, 2000).Google Scholar
33Tu, K.N., in Thin film Interdiffusion and Reactions, edited by Poate, J.M., Tu, K.N., and Mayer, J.W. (Wiley, New York, 1978), pp. 360403.Google Scholar
34Gebhardt, E. and Sehezzi, H.D., Z. Metallkd. 50, 521 (1952).Google Scholar
35Jehn, H. and Olzi, E., Less-Common Met. 27, 297 (1972).Google Scholar
36Stecura, S., Metall. Trans. 5, 1337 (1974).Google Scholar
37Lauf, R. and Altstetter, C., Scr. Metall. 11, 938 (1977).CrossRefGoogle Scholar
38Boreau, G. and Gerdanian., P.J. Phys. Chem. Solids 42, 749 (1981).Google Scholar