Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T15:40:00.205Z Has data issue: false hasContentIssue false

Effects of zinc(II) and iron(III) doping of titania films on their photoreactivity to decompose rhodamine B

Published online by Cambridge University Press:  31 January 2011

Ying Ma
Affiliation:
Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
Xin-tong Zhang
Affiliation:
Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
Zi-sheng Guan
Affiliation:
Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
Ya-an Cao
Affiliation:
Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
Jian-nian Yao
Affiliation:
Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
Get access

Abstract

The heterogeneous photocatalytic oxidation of rhodamine B in aqueous solution containing pure or zinc (iron)-doped titania films has been studied. N-deethylation of rhodamine B was accelerated by iron(III) and zinc(II) doping as compared with pure titania film. It is shown that improvement of electron transfer from dye molecules to the film may be responsible for the high N-deethylation rate for iron-doped (0.5 mol%) film, while for zinc-doped (20 mol%) film, high surface roughness may be the main reason. In addition, both iron and zinc doping brought a new shallow trap to the intragap meaning that the surface defects had increased after doping; this is a possible reason doped films present relative low photoreactivity to catalyze the direct degradation of dye molecules.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Pruder, L. and Ollis, D.F., J. Catal. 82, 404 (1983).CrossRefGoogle Scholar
2Di Paola, A., Palmisano, L., Venezia, A.M., and Augugliaro, V., J. Phys. Chem. B 103, 8236 (1999).CrossRefGoogle Scholar
3Hoffmann, M.R., Martin, S.T., Choi, W., and Bahnemann, D.W., Chem. Rev. 95, 69 (1995).CrossRefGoogle Scholar
4Linsebigler, A.L., Lu, G., and Yates, J.T. Jr., Chem. Rev. 95, 735 (1995).CrossRefGoogle Scholar
5Kerzhentsev, M., Guillard, C., Herrmann, J-M., and Pichat, P., Catal. Today 27, 215 (1996).CrossRefGoogle Scholar
6Herrmann, J-M., Disdier, J., and Pichat, P., Chem. Phys. Lett. 108, 618 (1984).CrossRefGoogle Scholar
7Karakitsou, K.E. and Verykios, X.E., J. Phys. Chem. 97, 1184 (1993).CrossRefGoogle Scholar
8Yu, J.C., Lin, J., and Kwok, R.W.M., J. Phys. Chem. B 102, 5094 (1998).CrossRefGoogle Scholar
9Litter, M.I., Appl. Catal., B 23, 89 (1999).CrossRefGoogle Scholar
10Navio, J.A., Garcia Gómez, M., Pradera Adrian, M.A., and Fuentes Mota, J., J. Mol. Catal. A, 104, 329 (1996).CrossRefGoogle Scholar
11Ma, Y. and Yao, J.N., J. Photochem. Photobiol., A 116, 167 (1998).Google Scholar
12Ma, Y. and Yao, J.N., Chemosphere 38, 2407 (1999).CrossRefGoogle Scholar
13Wang, D.J., Liu, W., and Xiao, L.Z., Huaxue Tongbao 10, 32 (1989).Google Scholar
14Palmisano, L., Augugliaro, V., Sclafari, A., and Schiavello, M., J. Phys. Chem. 92, 6710 (1988).CrossRefGoogle Scholar
15Zhang, Z., Wang, C., Zakaria, R., and Ying, J.Y., J. Phys. Chem. 102, 10871 (1998).CrossRefGoogle Scholar
16Wang, L-Q., Ferris, K.F., Skiba, P.X., Shultz, A.N., Baer, D.R., and Engelhard, M.H., Surf. Sci. 440, 60 (1999).CrossRefGoogle Scholar
17Serpone, N., Lawless, D., and Khairutdinov, R., J. Phys. Chem. 99, 16646 (1995).CrossRefGoogle Scholar
18Ghosh, A.K., Wakim, F.G., and Adiss, P.R. Jr., Phys. Rev. 184, 979 (1969).CrossRefGoogle Scholar
19Hauffe, K., Hupfeld, J., and Wetterling, J., Z. Phys. Chem. 103, 115 (1976).CrossRefGoogle Scholar
20Choi, W., Termin, A., and Hoffmann, M.R., J. Phys. Chem. 98, 13669 (1994).CrossRefGoogle Scholar
21Redmond, G., Fitzmaurice, D., and Gratzel, M., J. Phys. Chem. 97, 6951 (1993).CrossRefGoogle Scholar
22Kamat, P.V., Chem. Rev. 93, 267 (1993).CrossRefGoogle Scholar
23Watanabe, T., Takizawa, T., and Honda, K., J. Phys. Chem. 81, 1845 (1977).Google Scholar
24Qu, P., Zhao, J.C., Shen, T., and Hidaka, H., J. Mol. Catal., A 129, 257 (1998).CrossRefGoogle Scholar
25Zhao, J.C., Wu, T.X., Wu, K.Q., Oikawa, K., Hidaka, H., and Serpone, N., Environ. Sci. Technol. 32, 2394 (1998).CrossRefGoogle Scholar
26Spanhel, L., Haase, M., Weller, H., and Henglein, A., J. Am. Chem. Soc. 109, 5649 (1987).CrossRefGoogle Scholar