Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T00:24:18.201Z Has data issue: false hasContentIssue false

Electrochemical behavior of bimetallic Ni–Ti surface generated by ion implantation

Published online by Cambridge University Press:  03 March 2011

M.T. Pham
Affiliation:
Forschungszentrum Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, P.O. Box 51 01 19, 01314 Dresden, Germany
M.F. Maitz
Affiliation:
Forschungszentrum Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, P.O. Box 51 01 19, 01314 Dresden, Germany
H. Reuther
Affiliation:
Forschungszentrum Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, P.O. Box 51 01 19, 01314 Dresden, Germany
E. Richter
Affiliation:
Forschungszentrum Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, P.O. Box 51 01 19, 01314 Dresden, Germany
W. Matz
Affiliation:
Forschungszentrum Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, P.O. Box 51 01 19, 01314 Dresden, Germany
A. Muecklich
Affiliation:
Forschungszentrum Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, P.O. Box 51 01 19, 01314 Dresden, Germany
F. Prokert
Affiliation:
Forschungszentrum Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, P.O. Box 51 01 19, 01314 Dresden, Germany
Get access

Abstract

Thin films Ni−Ti (<100 nm) having surface Ni content below 5 at.% were prepared by ion-implanting Ni into Ti surfaces. The Ni-containing phase exposed or buried within the Ti matrix was amorphous. Following an anodic oxidation in NaOH, the material was shown to be redox active and to promote the electrocatalytic oxidation of glucose depending on the surface Ni–Ti composition. Compared to the Ni–Ti bulk alloy (55.9:44.08), the Ni-implanted Ti displayed a more efficient catalytic activity and improved corrosion resistance.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1McBreen, J. in Modern Aspects of Electrochemistry, edited by White, R., Bockris, J., and Conway, B. (Plenum Press, New York, 1990), 21 Chap. 2.Google Scholar
2Carone, J.A. in Handbook of Batteries, edited by Linden, D. (McGraw-Hill, Toronto, 1994), Chap. 28.Google Scholar
3Nikolov, I., Darkaoui, R., Zhecheva, E.E., Stoyanova, R., Dimitrov, N. and Vitanov, T.: J. Electroanal. Chem. 429 157 (1997).CrossRefGoogle Scholar
4Schumacher, L.C., Holzhueter, I.B., Hill, I.R. and Dignam, M.J.: Electrochim. Acta 35 975 (1990).CrossRefGoogle Scholar
5Chen, J., Bradhurst, D.H., Dou, S.X. and Liu, H.K.: J. Electrochem. Soc. 146 3606 (1999).CrossRefGoogle Scholar
6Maruyama, T. and Arai, S.: J. Electrochem. Soc. 143 1383 (1996).CrossRefGoogle Scholar
7Luo, P.F. and Kuwana, T.: Anal. Chem. 66 2775 (1994).CrossRefGoogle Scholar
8Titz, A. and Buchberger, W.: Fresenius J. Anal. Chem. 339 57 (1991).Google Scholar
9Marioli, J.M., Luo, P.F. and Kuwana, T.: Anal. Chim. Acta 282 571 (1993).CrossRefGoogle Scholar
10Casella, G. and Gatta, M.: J. Electrochem. Soc. 149 B465 (2002).CrossRefGoogle Scholar
11Goto, M., Miyahara, H. and Ishii, D.: J. Chromatography 515 213 (1990).CrossRefGoogle Scholar
12Casella, I.G., Gatta, M. and Castaldi, T.R.I.: J. Chromatography A 878 57 (2000).CrossRefGoogle Scholar
13Fleischmann, M., Korinek, K. and Pletcher, D.: Electroanal. Chem. 31 39 (1971).CrossRefGoogle Scholar
14Ohnishi, K., Einaga, Y., Notsu, H., Terashima, C., Rao, T.N., Park, S.G. and Fujishima, A.: Electrochem. Solid-State Lett. 5 D1 (2002).CrossRefGoogle Scholar
15Zouaoui, A., Stephan, O., Carrier, M. and Moutet, J.C.: J. Electroanal. Chem. 474 113 (1999).CrossRefGoogle Scholar
16Luo, P.F., Kuwana, T., Paul, D.K. and Sherwood, P.M.A.: Anal. Chem. 68 3330 (1996).CrossRefGoogle Scholar
17Serebrennikova, I. and Birss, V.I.: J. Electrochem. Soc. 147 3614 (2000).CrossRefGoogle Scholar
18Svegl, F., Orel, B. and Hutchins, M.: J. Sol.-Gel Sci. Technol. 8 765 (1996).Google Scholar