Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-02T18:42:50.750Z Has data issue: false hasContentIssue false

Enthalpy of formation of cubic yttria-stabilized zirconia

Published online by Cambridge University Press:  06 January 2012

T. A. Lee
Affiliation:
Thermochemistry Facility, Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, California 95646–8779
A. Navrotsky
Affiliation:
Thermochemistry Facility, Department of Chemical Engineering and Materials Science, University of California at Davis, Davis, California 95646–8779
I. Molodetsky
Affiliation:
Schlumberger–Princeton Technology Center, 20 Wallace Road, Princeton Junction, New Jersey 08550
Get access

Abstract

Oxide melt solution calorimetric measurements were made to determine the enthalpy of formation of cubic-yttria-stabilized zirconia (c-YSZ) with respect to the oxides m-ZrO2 and C-type YO1.5. The enthalpy of formation can be fit either by a quadratic equation or by two straight line segments about the minimum near x = 0.40. The quadratic fit gives a strongly negative interaction parameter, Ω=-93.7 ± 12.0 kJ/mol, but does not imply regular solution behavior because of extensive short-range order. In this fit, the enthalpy of transition of m-ZrO2 to c-ZrO2, 9.7 ± 1.1 kJ/mol, is in reasonable agreement with earlier estimates and that of C-type to cubic fluorite YO1.5, 24.3 ±14.4 kJ/mol, is consistent with an essentially random distribution of oxide ions and anion vacancies in the high-temperature fluorite phase. The two straight-line segments give 6.1 ± 0.6 kJ/mol and 5.5 ± 2.5 kJ/mol for these transitions, respectively. The latter value would imply strong short-range order in cubic fluorite YO1.5. Clearly more complex solution thermodynamic descriptions need to be developed. The enthalpy of transition from the disordered c-YSZ phase to the ordered δ-phase at 25 °C was also measured and was 0.4 ± 1.6 kJ/mol. No energetic difference between the disordered c-YSZ phase and the ordered δ-phase underscores the importance of short-range order in c-YSZ. Enthalpy data were combined with Gibbs free energy data to calculate entropies of mixing. Using the quadratic fit, negative excess entropy of mixing in the cubic solid solution, relative to a system with maximum randomness on cation and anion sublattices, was found and was another indication of extensive short-range order in c-YSZ.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Coughlin, J.P. and King, E.G., J. Am. Chem. Soc. 72, 2262 (1950).CrossRefGoogle Scholar
Ackermann, R.J., Rauh, E.G., and Alexander, C.A., High Temp. Sci. 7, 304 (1975).Google Scholar
Køfstad, P., Nonstoichiometry, Diffusion, and Electrical Conductivity (Wiley-Interscience, New York, 1972), p. 153.Google Scholar
Etsell, T.H. and Flengas, S.N., Chem. Rev. 70, 339 (1970).Google Scholar
Kilner, J.A. and Steele, B.C.H., in Nonstoichiometric Oxides, edited by Sørenson, O.T. (Academic Press, New York, 1981), p. 254.Google Scholar
Gibson, I.R., Dransfield, G.P., and Irvine, J.T.S., J. Eur. Ceram. Soc. 18, 661 (1998).CrossRefGoogle Scholar
Yugami, H., Koike, A., Ishigame, M., and Suemoto, T., Phys. Rev. B 17, 9214 (1991).CrossRefGoogle Scholar
Li, P., Chen, J., and Penner-Hahn, J., Phys. Rev. B 48, 10074 (1993).CrossRefGoogle Scholar
Scott, H.G., Acta. Crystallogr. B 33, 281 (1977).CrossRefGoogle Scholar
Stubican, V.S., Hink, R.C., and Ray, S.P., J. Am. Ceram. Soc. 61, 17 (1978).CrossRefGoogle Scholar
Pascual, C. and Duran, P., J. Am. Ceram. Soc. 66, 23 (1983).CrossRefGoogle Scholar
Molodetsky, I., Ph.D. Dissertation, Princeton University, Princeton, NJ (1999).Google Scholar
Molodetsky, I., Navrotsky, A., Lajavardi, M., and Brune, A., Zeit. Phys. Chem. 207, 59 (1998).CrossRefGoogle Scholar
Navrotsky, A., Phys. Chem. Miner. 24, 222 (1997).CrossRefGoogle Scholar
Helean, K.B. and Navrotsky, A.J. Therm. Anal. Calorimetry 69, 751 (2002).CrossRefGoogle Scholar
McHale, J.M., Kowach, G.R., Navrotsky, A. and DiSalvo, F.J., Chem. Eur. J. 2, 1514 (1996).CrossRefGoogle Scholar
Strickler, D.W. and Carlson, W.G., J. Am. Ceram. Soc. 48, 286 (1965).CrossRefGoogle Scholar
Ray, S.P., Stubican, V.S., and Cox, D.E., Mater. Res. Bull. 15, 1419 (1980).CrossRefGoogle Scholar
Ellison, A.J.G. and Navrotsky, A., J. Am. Ceram. Soc. 75, 1430 (1992).CrossRefGoogle Scholar
Robie, R.A. and Hemingway, B.S., U.S. Geol. Survey Bull. 2131 (1995).Google Scholar
Bogicevic, A., Wolverton, C., Crosbie, G.M., and Stechel, E.B., Phys. Rev. B 64, 014106 (2001).CrossRefGoogle Scholar
Zhou, Z. and Navrotsky, A., J. Mater. Res. 7, 2920 (1992).CrossRefGoogle Scholar
Robie, R.A., Hemingway, B.S., and Fisher, J.R., U.S. Geol. Survey Bull. 1452 (1979).Google Scholar
Schelling, P.K., Phillpot, S.R., and Wolf, D., J. Am. Ceram. Soc. 84, 1609 (2001).CrossRefGoogle Scholar
Goff, J.P., Hays, W., Hull, S., Hutchings, M.T., and Clauseen, K.N., Phys. Rev. B 59, 014202 (1999).CrossRefGoogle Scholar
Wolverton, C. and Zunger, A., Phys. Rev. B 51, 6876 (1995).Google Scholar
Rao, J.C., Zhou, Y., and Li, D.X., J. Mater. Res. 16, 1806 (2001).CrossRefGoogle Scholar
Steele, D. and Fender, B.E.F., J. Phys. C: Solid State Phys. 7, 1 (1974).CrossRefGoogle Scholar
Gibson, I.R. and Irvine, J.T.S., J. Mater. Chem. 6, 895 (1996).CrossRefGoogle Scholar
Schoenlein, L.H., Hobbs, L.W., and Heuer, A.H., J. Appl. Cryst. 13, 315 (1980).CrossRefGoogle Scholar
McClellan, K.J., Xiao, S.Q., Lagerlof, K.P.D., Heuer, A.H., Philos. Mag. A 70, 185 (1994).CrossRefGoogle Scholar
Dai, Z.R., Wang, Z.I., Chen, Y.R., Wu, H.Z., and Liu, W.X., Philos. Mag. A 73, 415 (1996).Google Scholar
Catlow, C.R.A., Chadwick, A.V., Greaves, G.N., and Moroney, L.M., J. Am. Ceram. Soc. 69, 272 (1986).Google Scholar
Li, P., Chen, J., and Penner-Hahn, J., J. Am. Ceram. Soc. 77, 118 (1994).CrossRefGoogle Scholar
Butler, V., Catlow, C.R.A, and Fender, B.E.F., Solid State Ionics 5, 539 (1981).CrossRefGoogle Scholar
Dwivedi, A. and Cormack, A.N., Philos. Mag. A 61, 1 (1990).CrossRefGoogle Scholar
Zacate, M.O., Minervini, L., Bradfield, D.J., Grimes, R.W., and Sickafus, K.E., Solid State Ionics 128, 243 (2000).CrossRefGoogle Scholar
Henn, F.E., Buchanan, R.M., Jiang, N., and Stevenson, D.A., Appl. Phys A 60, 515 (1995).CrossRefGoogle Scholar
Manning, P.S., Sirman, J.D., Souza, R.A. De, and Kilner, J.A., Solid State Ionics 100, 1 (1997).CrossRefGoogle Scholar
Luo, J., Almond, D.P., and Stevens, R., J. Am. Ceram. Soc. 83, 1703 (2000).CrossRefGoogle Scholar
Vintonyak, V.M., Skolis, Y.Y., Levitskii, V.A., and Gerasimov, Y.I., Russ. J. Phys. Chem. 58, 1577 (1984).Google Scholar
Yokokawa, H., Sakai, N., Horita, T., Yamaji, K., Xiong, Y., Otake, T., Yugami, H., Kawada, T., and Mizusaki, J., J. Phase Equil. 22, 331 (2001).Google Scholar
Yokokawa, H., Sakai, N., Kawada, T., and Dokiya, M., Science and Technology of Zirconia V (American Ceramic Society, Westerville, OH, 1988), p. 59.Google Scholar
Yoshimura, M., Bull. Am. Ceram. Soc. 67, 1950 (1988).Google Scholar