Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-02T20:22:58.810Z Has data issue: false hasContentIssue false

Grain-growth kinetics in a nanocrystalline 2 yttria-stabilized tetragonal zirconia polycrystals ceramic with a silica-based glassy phase

Published online by Cambridge University Press:  06 January 2012

O. Markhsev
Affiliation:
Department of Materials Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
R. Chaim
Affiliation:
Department of Materials Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
Get access

Abstract

Grain-growth kinetics of a nanocrystalline 2 yttria-stabilized tetragonal zirconia polycrystals ceramic containing a silica-based glassy phase was determined at 1200 to 1600 °C. At short durations below 1300 °C, the slow grain growth was associated with zirconia dissolution for composition equilibration. The significant increase in the grain size started only after 10 h at 1400 °C or at shorter durations at higher temperatures. Clusters of the cubic grains formed at the two-phase field confirm the inhibited tetragonal grain growth to be independent of the cubic grains. The microstructure evolution during the tetragonal grain growth was interpreted in terms of grain coalescence. Grain growth was initiated by contact flattening and followed by grain-boundary diffusion through the grain-boundary glassy phase. Some aspects of cation diffusion within the viscous glass were also discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Betz, U., Sturm, A., Loffler, J.F., Wagner, W., Wiedenmann, A., Hahn, H., Mater. Sci. Eng. A 281, 68 (2000).CrossRefGoogle Scholar
Mayo, M.J., Int. Mater. Rev. 41, 85 (1996).CrossRefGoogle Scholar
Shakelford, J.F., Nicholson, P.S., and Smeltzer, W.W., Am. Ceram. Soc. Bull. 53, 865 (1974).Google Scholar
Lin, Y., Angelini, P., and Mecartney, M.L., J. Am. Ceram. Soc. 73, 2728 (1990).CrossRefGoogle Scholar
Sharif, A.A., Imamura, P.H., Mitchell, T.E., and Mecartney, M.L., Acta Mater. 46, 3863 (1998).CrossRefGoogle Scholar
Zhao, J., Ikuhara, Y., and Sakuma, T., J. Am. Ceram. Soc. 81, 2087 (1998).CrossRefGoogle Scholar
Ramamoorthy, R. and Chaim, R., J. Mater. Res. 16, 296 (2001).CrossRefGoogle Scholar
Mendelson, M.L., J. Am. Ceram. Soc. 52, 443 (1969).CrossRefGoogle Scholar
Chaim, R., Ruhle, M., and Heuer, A.H., J. Am. Ceram. Soc. 68, 427 (1985).CrossRefGoogle Scholar
Lange, F.F., J. Am. Ceram. Soc. 69, 240 (1986).CrossRefGoogle Scholar
Lee, I.G. and Chen, I.W., in Sintering “87”, edited by Somiya, S.S., Shimada, M., Yoshimura, M., and Watanabe, R. (Elsevier Applied Science, New York, 1998), p. 340.Google Scholar
Phase Diagrams for Zirconium + Zirconia Systems, edited by Ondik, H.M. and McMurdie, H.F. (ACerS and NIST, Westerville, OH, Washington, DC, 1998), p. 134.Google Scholar
Butterman, W.C. and Foster, W.R., Am. Mineral. 52, 880 (1967).Google Scholar
Sharif, A.A., Imamura, P.H., Mitchell, T.E., and Mecartney, M.L., Acta Mater. 46, 3863 (1998).CrossRefGoogle Scholar
Mukundhan, P., Du, H.H., and Withrow, S.P., J. Am. Ceram. Soc. 85, 1613 (2002).CrossRefGoogle Scholar
Ikuhara, Y., Nagai, Y., Yamamoto, T., and Sakuma, T., Interface Sci. 7, 77 (1999).CrossRefGoogle Scholar
Zhao, J., Ikuhara, Y., and Sakuma, T., J. Am. Ceram. Soc. 81, 2087 (1998).CrossRefGoogle Scholar
Lifshitz, I.M. and Slyozov, V.V., J. Phys. Chem. Solids 19, 35 (1961).CrossRefGoogle Scholar
Wagner, C., Z. Elektrochem. 65, 581 (1961).Google Scholar
Warren, R., J. Mater. Sci. 7, 1434 (1972).CrossRefGoogle Scholar
Sarian, S. and Weart, H.W., J. Appl. Phys. 37, 1675 (1966).CrossRefGoogle Scholar
Ardell, A.J., Acta Metall. 20, 61 (1972).CrossRefGoogle Scholar
Brailsford, A.D. and Wynblatt, P., Acta Metall. 27, 489 (1979).CrossRefGoogle Scholar
Voorhees, P.W. and Glicksman, M.E., Met. Trans. 15A, 1081 (1984).CrossRefGoogle Scholar
Ramamoorthy, R. and Chaim, R., J. Eur. Ceram. Soc. 21, 2895 (2001).CrossRefGoogle Scholar
Tsoga, A. and Nikolopoulos, P., J. Mater. Sci. 31, 5409 (1996).CrossRefGoogle Scholar
Kingery, W.D., Introduction to Ceramics (Wiley, New York, 1976), p. 207.Google Scholar
Frischat, G.H., J. Am. Ceram. Soc. 52, 625 (1969).CrossRefGoogle Scholar
Mackenzie, J.D., Chem. Rev. 56, 455 (1956).CrossRefGoogle Scholar
Scott, H.G., J. Mater. Sci. 10, 1527 (1975).CrossRefGoogle Scholar
Ruh, R., Mazdiyasni, K.S., Valentine, P.G., and Bielstein, H.O., J. Am. Ceram. Soc. 67, C190 (1984).Google Scholar
Du, Y., Jin, Z.P., and Huang, P.Y., J. Am. Ceram. Soc. 74, 1569 (1991).CrossRefGoogle Scholar
Ondik, H.M. and Mc, H.F.Murdie, Phase Diagrams for Zirconium + Zirconia Systems (ACerS, Westerville, OH, 1998).Google Scholar
Traverse, J.P. and Foex, M., High Temp.–High Pressures 1, 409 (1969).Google Scholar
Noguchi, T., Okubo, T., and Yonemochi, O., J. Am. Ceram. Soc. 52, 178 (1969).CrossRefGoogle Scholar