Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-05T03:39:13.687Z Has data issue: false hasContentIssue false

Growth of epitaxial GaN on LiGaO2 substrates via a reaction with ammonia

Published online by Cambridge University Press:  31 January 2011

David Kisailus
Affiliation:
Department of Materials Engineering, University of California, Santa Barbara, California 93106
F. F. Lange
Affiliation:
Department of Materials Engineering, University of California, Santa Barbara, California 93106
Get access

Abstract

Oriented GaN and LixGa(2−x)O2xN2(1−x) thin films were found to grow on LiGaO2 single-crystal (001) substrates via a reaction between ammonia (or reactive ammonia species) and substrate components at temperatures between 700 and 1000 °C. The compound LixGa(2−x)O2xN2(1−x), where x was determined to be ≈0.35, is a solid solution formed from a partial reaction of ammonia with the LiGaO2 substrate. Negligible lithium (i.e., x ≈ ≈ 0) was detected in the films formed with a constant high flow rate (164 cm3/min) of ammonia, indicating a complete reaction with the LiGaO2 single crystal. The growth of a partial surface film and surface pitting suggests a vapor reaction (via loss of LiNH2 or LiOH, and nitridation of Ga2O) similar to that observed when semiconductor grade reacts with N2 to form Si3N4. The resultant films have either a wurtzite structure or one approaching the wurtzite structure. Both films form on the substrate with the same orientation as the LiGaO2.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nakamura, S., Appl. Phys. Lett. 64, 1687 (1994).Google Scholar
2.MacKenzie, J.D., Donovan, S.M., Abernathy, C.R., Pearton, S.J., Holloway, P.H., Linares, R., Zavada, J., and Chai, B., J. Electrochem. Soc. 145, 2581 (1998).CrossRefGoogle Scholar
3.Ishii, T., Tazoh, Y., and Miyazawa, S., Jpn. J. Appl. Phys. 36, L139 (1997).CrossRefGoogle Scholar
4.Tazoh, Y., Ishii, T., and Miyazawa, S., Jpn. J. Appl. Phys. 36, L746 (1997).Google Scholar
5.Kung, P., Saxler, A., Zhang, X., Walker, D., Lavado, R., and Razeghi, M., Appl. Phys. Lett. 69, 2116(1996).Google Scholar
6.Andrianov, A.V., Lacklison, D.E., Orton, J.W., Cheng, T.S., Foxon, C.T., O’Donnell, K.P., and Nicholls, J.F.H., Semicond. Sci. Technol. 12, 154 (1997).Google Scholar
7.Middleton, P.G., Trager-Cowan, C., O’Donnell, K.P., Cheng, T.S., Hooper, S.E., and Foxon, C.T., Mater. Sci. Eng. B 43, 154 (1997).CrossRefGoogle Scholar
8.Duan, S., Teng, X., Han, P., and Lu, D., J. Cryst. Growth 195, 304.(1998).Google Scholar
9.Nicholls, J.F.H., in Gallium Nitride and Related Materials, edited by Ponce, F.A., Dupuis, R.D., Nakamura, S., and Edmond, J.A. (Mater. Res. Soc. Symp. Proc. 395, Pittsburgh, PA, 1996), p.535.Google Scholar
10.Okada, M., Higaki, Y., Yanagi, T., Shimizu, Y., Nanishii, Y., Ishii, T., and Miyazawa, S., J. Cryst. Growth 189/190, 213 (1998).CrossRefGoogle Scholar
11.Ishii, T., Tazoh, Y., and Miyazawa, S., J. Cryst. Growth 186, 409 (1998).Google Scholar
12.Wolan, J.T. and Hoflund, G.B., J. Vac. Sci. Technol. A. 16, 3418 (1998).Google Scholar
13.Balkas, C.M. and Davis, R.F., J. Am. Ceram. Soc. 79, 2309 (1996).CrossRefGoogle Scholar
14.Juza, H., Z. Anorg. Chem. 239, 285 (1938).Google Scholar
15.Kudo, H., Wu, C.H., and Ihle, H.R., J. Nucl. Mater. 78, 380 (1978).CrossRefGoogle Scholar
16.Butt, D.P., Park, Y., and Taylor, T.N., J. Nucl. Mater. 264, 71 (1999).Google Scholar
17.Gnaser, H. and Oechsner, H., Surf. Sci. Lett. 302, L289 (1994).CrossRefGoogle Scholar
18.CRC Handbook of Chemistry and Physics, 69th ed., edited by Weast, R.C. (CRC Press, Boca Raton, FL, 1989).Google Scholar
19.Atkinson, A., Moulson, A.J., and Roberts, E.W., J. Am. Ceram. Soc. 59, 285 (1976).Google Scholar