Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T00:14:21.540Z Has data issue: false hasContentIssue false

Interactions between toughening mechanisms: Transformation toughening versus plastic deformation

Published online by Cambridge University Press:  31 January 2011

Wei-Hsing Tuan
Affiliation:
Department of Materials Science and Engineering, National Taiwan University, Taipei 106, Taiwan, Republic of China
Rong-Zhi Chen
Affiliation:
High Temperature Materials Sec., Materials & Electro-Optics Research Division, Chung-Shan Institute of Science and Technology, Lung-tan, Tao-Yuan 325, Taiwan, Republic of China
Get access

Abstract

In this study, the interactions between transformation toughening and plastic stretching were investigated experimentally. Zirconia and metals, nickel or silver, were incorporated simultaneously into an alumina matrix. The extent of phase transformation of zirconia particles was enhanced due to the coexistence of soft metals. The ductility of nickel was also enhanced in the Al2O3–Ni–ZrO2 composites. However, the presence of zirconia particles at the alumina/silver interface reduced the ability of silver to deform plastically. Due to the interactions, the ratio of composite toughness to matrix toughness for the Al2O3–Ni–ZrO2 composite was higher than the product of the ratio of the composites containing only nickel and only zirconia.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Evans, A.G., J. Am. Ceram. Soc. 73, 187 (1990).CrossRefGoogle Scholar
2.Brook, R.J., J. Eur. Ceram. Soc. 5, 75 (1989).CrossRefGoogle Scholar
3.Claussen, N., in Advances in Ceramics, Vol. 12, edited by Claussen, N., Rühle, M., and Heuer, A.H. (Am. Ceram. Soc., Columbus, OH, 1984), p. 325.Google Scholar
4.Tuan, W.H. and Brook, R.J., J. Eur. Ceram. Soc. 6, 31 (1990).CrossRefGoogle Scholar
5.Chou, W.B. and Tuan, W.H., J. Eur. Ceram. Soc. 15, 291 (1995).CrossRefGoogle Scholar
6.Rühle, M. and Evans, A.G., Prog. Mater. Sci. 33, 85 (1989).CrossRefGoogle Scholar
7.Hannink, R.H.J., Kelly, P.M., and Muddle, B.C., J. Am. Ceram. Soc. 83, 461 (2000).CrossRefGoogle Scholar
8.Zhai, H., Huang, Y., Wang, C., and Wu, X., J. Am. Ceram. Soc. 83, 2006 (2000).CrossRefGoogle Scholar
9.Shin, Y-S., Rhee, Y-W., and Kang, S-J.L., J. Am. Ceram. Soc. 82, 1229 (1999).CrossRefGoogle Scholar
10.Amazigo, J.C. and Budiansky, B., J. Mech. Phys. Solids 36, 581 (1988).CrossRefGoogle Scholar
11.Becher, P.F. and Tiegs, T.N., J. Am. Ceram. Soc. 70, 651 (1987).CrossRefGoogle Scholar
12.Claussen, N. and Petzow, G., J. Phys., Colloque C1, supplement au n2, Tome 47, cl-693 (1986).Google Scholar
13.Jang, H.M., Moon, J.H., and Jang, C.W., J. Am. Ceram. Soc. 75, 3369 (1992).CrossRefGoogle Scholar
14.Hong, J.S., Huang, X.X., and Guo, J.K., J. Mater. Sci. 31, 4847 (1996).CrossRefGoogle Scholar
15.Ruh, R., Mazdiyasni, K.S., and Mendiratta, M.G., J. Am. Ceram. Soc. 71, 503 (1988).CrossRefGoogle Scholar
16.Chen, R.Z. and Tuan, W.H., J. Eur. Ceram. Soc. 20, 1901 (2000).CrossRefGoogle Scholar
17.Chen, R.Z. and Tuan, W.H., J. Eur. Ceram. Soc. 21, 2887 (2001).CrossRefGoogle Scholar
18.Ashby, M.F., Blunt, F.J., and Bannister, M., Acta Metall. 37, 1847 (1989).CrossRefGoogle Scholar
19.Evans, P.A., Stevens, R., and Binner, J.P., Brit. Ceram. Trans. J. 84, 39 (1984).Google Scholar
20.Davidge, R.W. and Green, T.J., J. Mater. Sci. 3, 629 (1968).CrossRefGoogle Scholar
21.Hoerz, G., Speck, H., Hehn, W., Formm, E., and Jehn, H., Physics Data, Gases and Carbon in Metals (Max-Planck Institute, Stuttgart, Germany, 1983).Google Scholar
22.Nikolopoulos, P. and Agathopoulos, S., J. Eur. Ceram. Soc. 10, 415 (1992).CrossRefGoogle Scholar
23.Sotiropoulou, D. and Nikolopoulos, P., J. Mater. Sci. 28, 356 (1993).CrossRefGoogle Scholar