Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-14T17:39:37.887Z Has data issue: false hasContentIssue false

On some discrepancies in the literature about the formation of icosahedral quasi-crystal in Al–Cu–Fe alloys

Published online by Cambridge University Press:  31 January 2011

Jianian Gui*
Affiliation:
Department of Physics, Wuhan University, Wuhan 430072, China
Jianbo Wang
Affiliation:
Department of Physics, Wuhan University, Wuhan 430072, China and Beijing Laboratory of Electron Microscopy, Chinese Academy of Sciences, P.0. Box 2724, Beijing 100080, China
Renhui Wang
Affiliation:
Department of Physics, Wuhan University, Wuhan 430072, China and Beijing Laboratory of Electron Microscopy, Chinese Academy of Sciences, P.0. Box 2724, Beijing 100080, China
Dahai Wang
Affiliation:
Department of Physics, Wuhan University, Wuhan 430072, China
Jing Liu
Affiliation:
Technical Center, Wuhan Iron and Steel Co., Wuhan 430080, China
Fangyu Chen
Affiliation:
Technical Center, Wuhan Iron and Steel Co., Wuhan 430080, China
*
a)Address all correspondence to this author.jingui@whu.edu.cn
Get access

Abstract

To clarify some discrepancies in the literature about the formation of icosahedral quasi-crystal (IQC) in Al–Cu–Fe alloys, microstructures, and constituent phases of Al62.5Cu25Fe12.5 and Al65Cu20Fe15 alloys were studied. Each dendritic arm of the primarily solidified λ–Al13Fe4 phase is a single crystal that possesses no definite orientation relationship with the IQC, formed by peritectic reaction (L + λ + β → IQC) or a solid-state reaction (Cu-rich phases + λ + β →?IQC). This fact disproves an assumption that λ-phase is an approximant of the IQC. Two types of cubic phase, β-phase with CsCl structure containing more Fe and τ3 phase, which is a superstructure and contains less Fe, were observed depending on the composition and thermal history of the samples.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tsai, A.P., Inoue, A., and Masumoto, T., J. Mater. Sci. Lett. 6, 1403 (1987).CrossRefGoogle Scholar
2.Bradley, A.J. and Goldschmidt, H.J., J. Inst. Metals 65, 403 (1939).Google Scholar
3.Dong, C., De Boissieu, M., Dubois, J.M., Pannetier, J., and Janot, C., J. Mater. Sci. Lett. 8, 827 (1989).CrossRefGoogle Scholar
4.Dong, C., Dubois, J.M., De Boissieu, M., and Janot, C., J. Phys.: Condens. Matter 2, 6339 (1990).Google Scholar
5.Faudot, F., Quivy, A., Calvayrac, Y., Gratias, D., and Harmelin, M., Mater. Sci. Eng. A 133, 383 (1991).CrossRefGoogle Scholar
6.Gayle, F.W., Shapiro, A.J., Biancaniello, F.S., and Boettinger, , Metall. Trans. A 23A, 2409 (1992).CrossRefGoogle Scholar
7.Gratias, D., Calvayrac, Y., Devaud-Rzepski, J., Faudot, F., Harmelin, M., Quivy, A., and Bancel, P.A., J. Non-Cryst. Solids 153 & 154, 482 (1993).CrossRefGoogle Scholar
8.Faudot, F., Ann. Chim. Fr. 18, 445 (1993).Google Scholar
9.Tsai, A.P., in Physical Properties of Quasicrystals, edited by Stadnik, Z.M. (Springer, Berlin, Heidelberg, New York, 1999), p. 5.CrossRefGoogle Scholar
10.Bancel, P.A., in Quasicrystals: the State of Art, edited by Di Vincenzo, D.P. and Steinhardt, P.J. (World Scientific, Singapore, New Jersey, London, Hong Kong, 1991), p. 17.CrossRefGoogle Scholar
11.Quiquandon, M., Quivy, A., Devaud, J., Faudot, F., Lefebvre, S., Bessière, M., and Calvayrac, Y., J. Phys.: Condens. Matter 8, 2487 (1996).Google Scholar
12.Grushko, B., Wittenberg, R., and Holland-Moritz, D., J. Mater. Res. 11, 2177 (1996).CrossRefGoogle Scholar
13.Barbier, J-N., Tamura, N., and Verger-Gaugry, J-L., J. Non-Cryst. Solids 153 & 154, 126 (1993).CrossRefGoogle Scholar
14.Balzuweit, K., Meekes, H., van Tendeloo, G., and de Boer, J.L., Phil. Mag. B 67, 513 (1993).CrossRefGoogle Scholar
15.Voltz, C., Blétry, J., and Audier, M., Phil. Mag. A 77, 1351 (1998).CrossRefGoogle Scholar
16.Dingley, D.J., Baba-Kishi, K.Z., and Randle, V., Atlas of Backscattering Kikuchi Diffraction Patterns (Inst. of Phys. Publishing, Bristol, 1995).Google Scholar
17.Grin, J., Burkhardt, U., Ellner, M., and Peters, K., Kritallogr, Z.. 209, 479 (1994).Google Scholar
18.Menguy, N., de Boissieu, M., Guyot, P., Audier, M., Elkaim, E., and Lauriat, J.P., J. Phys. I, France 3, 1953 (1993).CrossRefGoogle Scholar
19.Waseda, A., Araki, K., Kimura, K., and Ino, H., J. Non-Cryst. Solids 153 & 154, 635 (1993).CrossRefGoogle Scholar
20.He, L.X., Li, X.Z., Zhang, Z., and Kuo, K.H., Phys. Rev. Lett. 61, 1116 (1988).CrossRefGoogle Scholar
21.Gayle, F.W., J. Phase Equilib. 13, 619 (1992).CrossRefGoogle Scholar
22.Grushko, B., Wittenberg, R., and Urban, K., J. Mater. Res. 7, 2713 (1992).CrossRefGoogle Scholar
23.Grushko, B., Phase Transitions 44, 99 (1993).CrossRefGoogle Scholar
24.Cheng, Y.F., Hui, M.J., Chen, X.S., and Li, F.H., Phil. Mag. Lett. 61, 173 (1990).CrossRefGoogle Scholar