A procedure using nanoindentation with spherical tipped indenters is presented that allows separation of elastic, anelastic, and plastic contributions to the deformation of thin films. The procedure was demonstrated on a range of lanthanum-modified lead titanate (Pb,La)TiO3 (PTL) ferroelectric thin films. Indentation stiffness coefficients ranging from 110 to 147 GPa have been obtained depending on the microstructure and orientation of the PTL films. This coefficient was equivalent to (and so, can be directly compared with) Young's modulus of a nontextured, unpoled ceramic when films do not present preferred orientation. The trends of the anelastic contribution with the thickness, structure, microstructure, and stress level at the film/substrate interface of the films were consistent with it being produced by ferroelastic domain wall movement. Pore compaction was a major mechanism of plastic deformation for the PTL films. Grain size also affected plastic deformation, probably as a consequence of its correlation with intergranular porosity. The technique has a high spatial resolution (contact area < 10 μm2 for the results presented here), which allowed the mechanical homogeneity of the films to be studied and inhomogeneities to be identified from their mechanical response (elastic, anelastic, and plastic).