Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T15:36:17.273Z Has data issue: false hasContentIssue false

Oxygen transport during annealing of Pb(Zr,Ti)O3 thin films in O2 gas and its effect on their conductivity

Published online by Cambridge University Press:  31 January 2011

F. Ayguavives*
Affiliation:
Department of Material Science and Engineering, North Carolina State University, Box 7919, Raleigh, North Carolina 27695
B. Agius
Affiliation:
Laboratoire de Physique des Gaz et des Plasmas (LPGP), Centre Universitaire, Bat 210, 91405 Orsay Cedex, France
B. EaKim
Affiliation:
Laboratoire Charles Fabry (IOTA), Centre universitaire BP 147, 91403 Orsay Cedex, France
I. Vickridge
Affiliation:
Groupe de Physique des Solides, Université Paris VII et VI, Paris, France
*
a)Address all correspondence to this author.tito.ayguavives@coherentinc.com
Get access

Abstract

Lead zirconate titanate (PZT) thin films were deposited in a reactive argon/oxygen gas mixture by radio-frequency-magnetron sputtering. The use of a metallic target allows us to control the oxygen incorporation in the PZT thin film and also, using oxygen 18 as a tracer, to study the oxygen diffusion in the thin films. Electrical properties and crystallization were optimized with a 90-nm PZT thin film grown on RuO2 electrodes. These PZT films, annealed with a very modest thermal budget (550 °C) show very low leakage current densities (J = 2 × 10−8 A/cm2 at 1 V). In this article we show that a strong correlation exists between the oxygen composition in the PZT film and the leakage current density.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Moazzami, R., Hu, C., and Shepherd, W.H., IEEE Electron Device Lett. 11, 454 (1990).CrossRefGoogle Scholar
2Fork, D.K., Armani-Leplingard, F., and Kingston, J.J., MRS Bull. 21, 53 (1996).CrossRefGoogle Scholar
3Sreenivas, K and Sayer, M., J. Appl. Phys. 64, 1484 (1988).CrossRefGoogle Scholar
4Polla, D.L. and Francis, L.F., MRS Bull. 21, 59 (1996).CrossRefGoogle Scholar
5Vasant Kumar, C.V.R., Pascual, R., and Sayer, M., J. Appl. Phys. 71, 864 (1992).CrossRefGoogle Scholar
6Ramesh, R., Chan, W.K., Wilkens, B., Gilchrist, H., Sands, T., Tarascon, J.M., Keramidas, V.G., Fork, D.K., Lee, J., and Safari, A., Appl. Phys. Lett. 61, 1537 (1992).Google Scholar
7Fox, G.R. and Krupanidhi, S.B., J. Mater. Res. 9, 699 (1994).CrossRefGoogle Scholar
8Yoo, I.K. and Desu, S.B., Mater. Sci. Eng. B13, 319 (1992).Google Scholar
9Ayguavives, F., Ea-Kim, B., Agius, B., and Bretagne, J., Appl. Phys. Lett. 73, 1023 (1998).Google Scholar
10Ayguavives, F., Ea-Kim, B., and Agius, B., Ferroelectrics 225, 229 (1999).CrossRefGoogle Scholar
11Maurel, B., Amsel, G., and Nadai, J.P., Nucl. Instrum. Methods 218, 165 (1983).CrossRefGoogle Scholar
12Vickridge, I. and Amsel, G., Nucl. Instrum. Methods B45, 6 (1990).Google Scholar
13Battistig, G., Amsel, G., d’Artemare, E., and Vickridge, I., Nucl. Instrum. Methods B66, 1 (1992).Google Scholar
14Battistig, G., Amsel, G., d’Artemare, E., and Vickridge, I., Nucl. Instrum. Methods B61, 369 (1991).Google Scholar
15Cattan, E. and Agius, B., J. Vac. Sci. Technol. A11, 2808 (1993)..Google Scholar
16Scott, J.F., Araujo, C.A., Melnick, B.M., McMillan, L.D., and Zuleeg, R., J. Appl. Phys. 70, 382 (1991).Google Scholar
17Vijay, D.P. and Desu, S.B., J. Electrochem. Soc. 140, 2640 (1993).Google Scholar
18Dat, R., Lichtenwalkner, D.J., Auciello, O., and Kingon, A.I., Appl. Phys. Lett. 64, 2673 (1994).Google Scholar