Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T15:14:32.140Z Has data issue: false hasContentIssue false

Rational solvent selection strategies to combat striation formation during spin coating of thin films

Published online by Cambridge University Press:  31 January 2011

Dunbar P. Birnie*
Affiliation:
Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85721-0012
*
a)Address all correspondence to this author.birnie@Aml.arizona.edu
Get access

Abstract

Striation defects in spin-coated thin films are a result of unfavorable capillary forces that develop due to the physical processes commonly involved in the spin-coating technique. Solvent evaporation during spinning causes depletion at the surface of the more volatile solution components while simultaneous viscous out-flow occurs providing the main source of solution thickness reduction during any typical spinning run. The composition changes in the surface layer can either stabilize or destabilize the surface with respect to convective motions within the coating solution. Destabilization (and therefore possible striation formation) happens when the surface composition changes so that a larger surface tension will develop. Thus, a careful cross-referencing of solvent volatility with surface tension effects can help establish solution conditions that will prevent this instability from arising. A plot of solvent vapor pressure (Pv) versus solvent surface tension (σ) is introduced and utilized to help discuss the impact of solvent choice when making coatings via spin coating. One important result is that when desiring to deposit a coating having a surface tension of σsolid, then it is favorable to use a fully miscible solvent that has a higher surface tension (i.e., σliquid > σsolid). More complicated solution mixtures were also examined, including dual-solvent systems and water-containing systems.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Emslie, A.G., Bonner, F.T., and Peck, C.G., J. Appl. Phys. 29, 858 (1958).CrossRefGoogle Scholar
2.Meyerhofer, D., J. Appl. Phys. 49, 3993 (1978).CrossRefGoogle Scholar
3.Bornside, D.E., Macosko, C.W., and Scriven, L.E., J. Imaging Technol. 13, 122 (1987).Google Scholar
4.Flack, W.W., Soong, D.S., Bell, A.T., and Hess, D.W., J. Appl. Phys. 56, 1199 (1984).CrossRefGoogle Scholar
5.Lawrence, C.J., Phys. Fluids 31, 2786 (1988).CrossRefGoogle Scholar
6.Lawrence, C.J., Phys. Fluids A 2, 453 (1990).CrossRefGoogle Scholar
7.Lawrence, C.J. and Zhou, W., J. Non-Newtonian Fluid Mech. 39, 137 (1991).CrossRefGoogle Scholar
8.Ohara, T., Matsumoto, Y., and Ohashi, H., Phys. Fluids A 1, 1949 (1989).CrossRefGoogle Scholar
9.Shimoji, S., Jpn. J. Appl. Phys. 26, L905 (1987).CrossRefGoogle Scholar
10.Jenekhe, S.A., Ind. Eng. Chem. Fundam. 23, 425 (1984).CrossRefGoogle Scholar
11.Haas, D.E., Quijada, J.N., Picone, S.J., and Birnie, D.P. III, Proc. SPIE 3943, 280 (2000).CrossRefGoogle Scholar
12.Chen, B.T., Polym. Eng. Sci. 23, 399 (1983).CrossRefGoogle Scholar
13.Malangone, R. and Needham, C.D., J. Electrochem. Soc. 129, 2881 (1982).CrossRefGoogle Scholar
14.Daughton, W.J., O’Hagan, P., and Givens, F.L., Thickness variance of spunon Photoresist, revisited, in Kodak Microelectronics Seminar Proceedings, San Diego, CA (Kodak, Rochester, NY, 1978), pp. 1520.Google Scholar
15.Sukanek, P.C., J. Electrochem. Soc. 138, 1712 (1991).CrossRefGoogle Scholar
16.Sukanek, P.C., J. Imaging Technol. 11, 184 (1985).Google Scholar
17.Bornside, D.E., Macosko, C.W., and Scriven, L.E., J. Electrochem. Soc. 138, 317 (1991).CrossRefGoogle Scholar
18.Lai, J.H., Polym. Eng. Sci. 19, 1117 (1979).CrossRefGoogle Scholar
19.Ohara, T., Matsumoto, Y., and Ohashi, H., Phys. Fluids A 1, 1949 (1989).CrossRefGoogle Scholar
20.Birnie, D.P. III, and Manuel Manley, Phys. Fluids 9, 870 (1997).CrossRefGoogle Scholar
21.Birnie, D.P. III, J. Non-Cryst. Solids 218, 174 (1997).CrossRefGoogle Scholar
22.Gu, J., Bullwinkel, M.D., and Campbell, G.A., J. Appl. Polym. Sci. 57, 717 (1995).CrossRefGoogle Scholar
23.Gu, J., Bullwinkel, M.D., and Campbell, G.A., Polym. Eng. Sci. 36, 1019 (1996).CrossRefGoogle Scholar
24.Horowitz, F., Yeatman, E., Dawnay, E., and Fardad, A., J. Phys. III Fr. 3, 2059 (1993).Google Scholar
25.Horowitz, F., Yeatman, E., Dawnay, E., and Fardad, A., SPIE Proc. 2288, 67 (1994).CrossRefGoogle Scholar
26.26. Birnie, D.P. III, Zelinski, B.J.J., Marvel, S.P., Melpolder, S.M., and Roncone, R., Opt. Eng. 31, 2012 (1992).CrossRefGoogle Scholar
27.Birnie, D.P. III, Zelinski, B.J.J., and Perry, D.L., Opt. Eng. 34, 1782 (1995).CrossRefGoogle Scholar
28.Birnie, D.P. III, Manley, M., Zelinski, B.J.J., and Melpolder, S.M., Opt. Interference Coat. ’95, Tech. Digest, TD1–TD 3 (1995).CrossRefGoogle Scholar
29. PZT coatings were made using a technique developed by Assink, R.A. and Schwartz, R.W., Chem. Mat. 5, 511 (1993).CrossRefGoogle Scholar
30.Benard, H., Rev. Gen. Sci. Pures Appl. Bull Assoc. Fr. Av. Sci. 11, 1261 (1900).Google Scholar
31.Daniels, B.K., Szmanda, C.R., Templeton, M.K., and Trefonas, P. III, SPIE Proc. 631, 192 (1986).CrossRefGoogle Scholar
32.Due, X.M., Orignac, X., and Almeida, R.M., J. Am. Ceram. Soc. 78, 2254 (1995).Google Scholar
33.Block, M.J., Nature 178, 650 (1956).CrossRefGoogle Scholar
34.Pearson, J.R.A., J. Fluid Mech. 4, 489 (1958).CrossRefGoogle Scholar
35.CRC Handbook of Chemistry and Physics (Chemical Rubber Co., Boca Raton, FL, 1999), edition on CDROM.Google Scholar
36.Vazquez, G., Alvarez, E., and Navaza, J.M., J. Chem. Eng. Data 40, 611 (1995).CrossRefGoogle Scholar
37.Haas, D.E. and Birnie, D.P. III, J. Mater. Sci. (2000, submitted for publication).Google Scholar
38.Nield, D.A., J. Fluid Mech. 19, 341 (1964).CrossRefGoogle Scholar
39.Vidal, A. and Acrivos, A., Ind. Eng. Chem. Fundam. 7 (1), 53 (1968).CrossRefGoogle Scholar
40.Benney, D.J., J. Math. Phys. 45, 150 (1966).CrossRefGoogle Scholar
41.Smith, M.K., J. Fluid Mech. 217, 469 (1990).CrossRefGoogle Scholar
42.Oron, A., Davis, S.H., and Bankoff, S.G., Rev. Mod. Phys. 69, 93 (1997).CrossRefGoogle Scholar
43.Scriven, L.E. and Sternling, C.V., Nature 187, 186 (1960).CrossRefGoogle Scholar
44.Thomson, J., Philos. Mag. 10, 330 (1855).CrossRefGoogle Scholar
45.Gaver, D.P. and Grotberg, J.B., J. Fluid Mech. 235, 399 (1992).CrossRefGoogle Scholar
46.Stichlmair, J. and Fair, J.R., Distillation: Principles and Practices (Wiley, New York, 1998).Google Scholar
47.From example data used in the following: Rock, P.A., Chemical Thermodynamics (University Science Books, Sausalito, CA, 1983).Google Scholar
48.Brinker, C.J. and Scherer, G.W., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, Boston, MA, 1990).Google Scholar
49Taylor, D.J. and Birnie, D.P. III, Chem. Mater. (2000, submitted for publication).Google Scholar