Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T00:12:56.573Z Has data issue: false hasContentIssue false

Residual stresses in functionally graded plates

Published online by Cambridge University Press:  31 January 2011

Achim Neubrand
Affiliation:
Department of Materials Science, University of Technology Darmstadt, 64287 Darmstadt, Germany
Tai-Joo Chung
Affiliation:
Department of Materials Science, University of Technology Darmstadt, 64287 Darmstadt, Germany
Jürgen Rödel
Affiliation:
Department of Materials Science, University of Technology Darmstadt, 64287 Darmstadt, Germany
Eric D. Steffler
Affiliation:
Idaho National Engineering and Environmental Laboratory, Idaho Falls, Idaho 83415
Theo Fett
Affiliation:
Forschungszentrum Karlsruhe, IMF II, 76021 Karlsruhe, Germany
Get access

Abstract

Macroscopic residual stresses in Al2O3/Al plates of graded composition were determined experimentally and by the finite element method (FEM). Experimental stress data were determined by sawing a notch in the plates and measuring displacements by Moiré interferometry. Residual stresses were calculated from the displacements using the weight function method. Experimentally determined stresses agreed with FEM data only if measured thermomechanical properties for the different compositions were used for finite element calculations.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Neubrand, A. and Rödel, J., Z. Metallkd. 88, 358 (1997).Google Scholar
2.Delfosse, D. and Ilschner, B., Mat.-wiss. u. Werkstofftechnik 23, 235 (1992).CrossRefGoogle Scholar
3.Yang, Y.Y., Int. J. Solids Struct. 35, 1261 (1998).CrossRefGoogle Scholar
4.Ravichandran, K.S., Mater. Sci. Eng. A201, 269 (1995).CrossRefGoogle Scholar
5.Itoh, Y., Kashikawa, H., J. Ceram. Soc. Jpn. 100, 476 (1992).CrossRefGoogle Scholar
6.Becker, T.L. Jr., Cannon, R.M., and Ritchie, R.O., Mech. Mater. 32, 85 (2000).CrossRefGoogle Scholar
7.Zhang, L.M., Tu, R., and Yuan, R-Z., in Proceedings of the 3rd International Symposium on Structural and Functional Gradient Materials, edited by Ilschner, B. and Cherradi, N. (Presses Polytechniques et Universitaires Romandes, Lausanne, Switzerland, 1995), p. 273.Google Scholar
8.Williamson, R.L., Rabin, B.H., and Drake, J.T., J. Appl. Phys. 74, 1310 (1993).CrossRefGoogle Scholar
9.Williamson, R.L., Rabin, B.H., and Byerly, G.E., Compos. Eng. 5, 851 (1995).CrossRefGoogle Scholar
10.Rabin, B.H., Williamson, R.L., Watkins, T.R., Wang, X.L., Hubbard, C.R., and Spoone, S., in Proceedings of the 3rd International Symposium on Structural and Functional Gradient Materials, edited by Ilschner, B. and Cherradi, N. (Presses Polytechniques et Universitaires Romandes, Lausanne, Switzerland, 1995), 209.Google Scholar
11.Bokuchava, G., Schreiber, J., Shamsutdinov, N., and Stalder, M., in Functionally Graded Materials 1998, edited by Kaysser, W.A. (TransTech Publications Ltd. Vetikon-Zuerich, Switzerland, 1999), p. 1018.Google Scholar
12.Delfosse, D., Künzi, H-U., and Ilschner, B., Acta Metall. Mater. 40, 2219 (1992).CrossRefGoogle Scholar
13.Kesler, O., Finot, M., Suresh, S., and Sampath, S., Acta Mater. 45, 3123 (1997).CrossRefGoogle Scholar
14.She, J., Scheppokat, S., Janssen, R., and Claussen, N., J. Mater. Sci. 34, 1823 (1999); M. Hoffman, S. Skirl, W. Pompe, and J. Rödel, Acta Mater. 47, 565 (1999).CrossRefGoogle Scholar
15.Cichocki, F.R. Jr., Trumble, K.P., and Rödel, J., J. Am. Ceram. Soc. 81, 1661 (1998).CrossRefGoogle Scholar
16.Hoffman, M., Skirl, S., Pompe, W., and Rödel, J., Acta Mater. 47, 565 (1999).CrossRefGoogle Scholar
17.Skirl, S., Mechanical Properties and Thermal Behavior of Al2O3/Al and Al2O3/Ni3Al Composites with Interpenetrating Network Microstructure, (VDI Verlag, Düsseldorf, Germany, 1998).Google Scholar
18.Post, D., Han, D.B., and Ifju, P., High Sensitivity Moiré: Experimental Analysis for Mechanics and Materials (Springer-Verlag, New York, 1994).CrossRefGoogle Scholar
19.Fett, T., Eng. Fract, Mech. 55, 571 (1996).CrossRefGoogle Scholar
20.Cheng, W. and Finnie, I., ASME J. Eng. Mat. Tech. 109, 337 (1987).CrossRefGoogle Scholar
21.Fett, T., Materialprufung 29, 92 (1987).Google Scholar
22.Fett, T. and Thun, G., Eng. Fract. Mech. 55, 571 (1996).CrossRefGoogle Scholar
23.Cheng, W. and Finnie, I., Weld. World 5/6, 103 (1989).Google Scholar
24.Fett, T., Munz, D., and Yang, Y.Y., Eng. Fract. Mech. 65, 393 (2000).CrossRefGoogle Scholar
25.Fett, T., Munz, D., and Yang, Y.Y., Fatigue Fract. Eng. Mater. Struct. 23, 191 (2000).CrossRefGoogle Scholar
26.Chung, T-J., Neubrand, A., Rödel, J., and Fett, T., in Functionally Graded Materials 2000, Ceramic Transactions 114, edited by Trumble, K., Bowman, K., Reimanis, I, and Sampath, S. (American Ceramic Society, Westerville, OH, 2001), p. 789.Google Scholar
27.Neubrand, A. and Kawasaki, A., in Functionally Graded Materials Vol. 13 (International Liaison Forum of Functionally Graded Materials, Sendai, Japan, 1999), p. 25.Google Scholar
28.Tuchinskii, L.I., Porosh. Metall. 7, 85 (1983).Google Scholar
29.Ravichandran, K.S., J. Am. Ceram. Soc. 77, 1178 (1994).CrossRefGoogle Scholar
30.Ashby, M.F., Metall. Trans. A 14A, 1755 (1983).CrossRefGoogle Scholar
31.Flinn, B.D., Bordia, R.K., Zimmermann, A., and Rödel, J., J. Eur. Ceram. Soc. 20, 2561 (2000).CrossRefGoogle Scholar
32.Daehn, G.S., Starck, B., Xu, L., Elfishway, K.F., Ringnalda, J., and Fraser, H.L., Acta Mater. 44, 249 (1996).CrossRefGoogle Scholar
33.Jedamzik, R., Neubrand, A., and Roödel, J., in Functionally Graded Materials 1998, edited by Kaysser, W.A. (TransTech Publications LTD, Vetikon-Zuerich, Switzerland, 1999), p. 782.Google Scholar
34.Rabin, B.H., Williamson, R.L., Bruck, H.A., Wang, X-L., Watkins, T.R., and Clarke, D.R., in Functionally Graded Materials 1996, edited by Shiota, I. and Miyamoto, M.Y. (Elsevier, Amsterdam, The Netherlands, 1997), p. 387.CrossRefGoogle Scholar