Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-29T08:05:05.256Z Has data issue: false hasContentIssue false

A review of monolithic and multilayer coatings within the boron–carbon–nitrogen system by ion-beam-assisted deposition

Published online by Cambridge University Press:  16 January 2012

Ignacio Jiménez*
Affiliation:
Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), E-28049 Madrid, Spain
Ricardo Torres
Affiliation:
Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), E-28049 Madrid, Spain
Ignacio Caretti
Affiliation:
Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), E-28049 Madrid, Spain
Raul Gago
Affiliation:
Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), E-28049 Madrid, Spain
Jose María Albella
Affiliation:
Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), E-28049 Madrid, Spain
*
a)Address all correspondence to this author. e-mail: ijimenez@icmm.csic.es
Get access

Abstract

A review is given on the use of ion-beam-assisted deposition (IBAD) to the growth of films within the B–C–N system, both as monolithic and multilayer coatings. The films considered include elemental, binary, and ternary materials like pure carbon (diamond-like carbon), pure boron (B), boron nitrides (c‑BN, h‑BN, and BNx), boron carbides (B4C and BxC), carbon nitrides (CNx), and ternary BxCyNz. The use of non-reactive IBAD with argon ions and reactive IBAD with nitrogen ions is discussed in connection with control of the composition, physical and chemical sputtering, film density, internal stress, and promotion of metastable phases.

Type
Reviews
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nakada, M.: Trends in engine technology and tribology. Tribol. Int. 27, 3 (1994).CrossRefGoogle Scholar
2.Clayton, P.: Tribological aspects of wheel-rail contact: A review of recent experimental research. Wear 191, 170 (1996).CrossRefGoogle Scholar
3.Tung, S.C. and McMillan, M.L.: Automotive tribology overview of current advances and challenges for the future. Tribol. Int. 37, 517 (2004).CrossRefGoogle Scholar
4.Priest, M. and Taylor, C.M.: Automobile engine tribology—Approaching the surface. Wear 241, 193 (2000).CrossRefGoogle Scholar
5.Cselle, T. and Barimani, A.: Today’s applications and future developments of coatings for drills and rotating cutting tools. Surf. Coat. Tech. 7677, 712 (1995).CrossRefGoogle Scholar
6.Kalss, W., Reiter, A., Derflinger, V., Gey, C., and Endrino, J.L.: Modern coatings in high performance cutting applications. Int. J. Refract. Met. Hard Mater. 24, 399 (2006).CrossRefGoogle Scholar
7.Arnell, R.D.: The mechanics of the tribology of thin-film systems. Surf. Coat. Tech. 4344, 674 (1990).CrossRefGoogle Scholar
8.Khurshudov, A. and Waltman, R.J.: Tribology challenges of modem magnetic hard-disk drives. Wear 251, 1124 (2001).CrossRefGoogle Scholar
9.Veprek, S.: The search for novel, superhard materials. J. Vac. Sci. Technol. A 17, 2401 (1999).CrossRefGoogle Scholar
10.Arenal, R., Blase, X., and Loiseau, A.: Boron-nitride and boron-carbonitride nanotubes: Synthesis, characterization and theory. Adv. Phys. 59, 101 (2010).CrossRefGoogle Scholar
11.Ma, R.Z., Goldberg, D., Bando, Y., and Sasaki, T.: Syntheses and properties of B-C-N and BN nanostructures. Philos. Trans. R. Soc. London. Ser. A 362, 2161 (2004).CrossRefGoogle ScholarPubMed
12.Terrones, M., Grobert, N., and Terrones, H.: Synthetic routes to nanoscale BxCyNz architectures. Carbon 40, 1665 (2002).CrossRefGoogle Scholar
13.Terrones, M.: Carbon nanotubes: Synthesis and properties, electronic devices and other emerging applications. Int. Mater. Rev. 49, 325 (2004).CrossRefGoogle Scholar
14.Geim, A.K. and Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183 (2007).CrossRefGoogle ScholarPubMed
15.Raidongia, K., Nag, A., Hembram, K.P.S.S., Waghmare, U.V., Datta, R., and Rao, C.N.R.: BCN: A graphene analogue with remarkable adsorptive properties. Chemistry 16, 149 (2010).CrossRefGoogle ScholarPubMed
16.Martins, J.D.R. and Chacham, H.: Disorder and segregation in B-C-N graphene-type layers and nanotubes: Tuning the band gap. ACS Nano 5, 385 (2011).CrossRefGoogle Scholar
17.Aisenberg, S. and Chabot, R.: Ion-beam deposition of thin films of diamondlike carbon. J. Appl. Phys. 42, 2953 (1971).CrossRefGoogle Scholar
18.Aisenberg, S. and Chabot, R.W.: Physics of ion plating and ion-beam deposition. J. Vac. Sci. Technol. 10, 104 (1973).CrossRefGoogle Scholar
19.Mattox, D.M.: Particle bombardment effects on thin-film deposition—A review. J. Vac. Sci. Technol. A 7, 1105 (1989).CrossRefGoogle Scholar
20.Hirvonen, J.K.: Ion-beam assisted thin-film deposition. Mater. Sci. Rep. 6, 215 (1991).CrossRefGoogle Scholar
21.Cotell, C.M. and Hirvonen, J.K.: Effect of ion energy on the mechanical properties of ion-beam-assisted deposition (IBAD) wear resistant coatings. Surf. Coat. Tech. 81, 118 (1996).CrossRefGoogle Scholar
22.Roy, R.: Low energy ion-assisted deposition of metal films. Surf. Coat. Tech. 51, 203 (1992).CrossRefGoogle Scholar
23.Ensinger, W.: The influence of ion irradiation during film growth on the chemical stability of film substrate systems. Surf. Coat. Tech. 80, 35 (1996).CrossRefGoogle Scholar
24.Ensinger, W.: Ion bombardment effects during deposition of nitride and metal films. Surf. Coat. Tech. 99, 1 (1998).CrossRefGoogle Scholar
25.Anders, A.: Metal plasma immersion ion implantation and deposition: A review. Surf. Coat. Tech. 93, 158 (1997).CrossRefGoogle Scholar
26.Zhang, D.H. and Brodie, D.E.: Effects of annealing ZnO films prepared by ion-beam-assisted reactive deposition. Thin Solid Films 238, 95 (1994).CrossRefGoogle Scholar
27.Ma, C.H., Huang, J.H., and Chen, H.: Nanohardness of nanocrystalline TiN thin films. Surf. Coat. Tech. 200, 3868 (2006).CrossRefGoogle Scholar
28.Iijima, Y., Tanabe, N., Kohno, O., and Ikeno, Y.: In-plane aligned YBa2Cu3O7-x thin films deposited on polycrystalline metallic substrates. Appl. Phys. Lett. 60, 769 (1992).CrossRefGoogle Scholar
29.Matias, V., Gibbons, B.J., and Feldmann, D.M.: Coated conductors textured by ion-beam-assisted deposition. Physica C 460, 312 (2007).CrossRefGoogle Scholar
30.Graper, E.B.: Distribution and apparent source geometry of electron-beam-heated evaporation sources. J. Vac. Sci. Technol. 10, 100 (1973).CrossRefGoogle Scholar
31.Schiller, S. and Jasch, G.: Deposition by electron-beam evaporation with rates of up to 50 μm s−1. Thin Solid Films 54, 9 (1978).CrossRefGoogle Scholar
32.Powell, A., Minson, P., Trapaga, G., and Pal, U.: Mathematical modeling of vapor-plume focusing in electron-beam evaporation. Metall. Mater. Trans. A 32, 1959 (2001).CrossRefGoogle Scholar
33.Aubreton, P., Bessaudou, A., and Di Bin, C.: Numerical simulation of metallic film thickness distribution deposited by electron beam co-evaporation under vacuum. Comput. Mater. Sci. 33, 400 (2005).CrossRefGoogle Scholar
34.Kaufman, H.R., Cuomo, J.J., and Harper, J.M.E.: Technology and applications of broad-beam ion sources used in sputtering. Part I. Ion source technology. J. Vac. Sci. Technol. 21, 725 (1982).CrossRefGoogle Scholar
35.Harper, J.M.E., Cuomo, J.J., and Kaufman, H.R.: Technology and applications of broad-beam ion sources used in sputtering. Part II. Applications. J. Vac. Sci. Technol. 21, 737 (1982).CrossRefGoogle Scholar
36.Kaufman, H.R., Robinson, R.S., and Seddon, R.I.: End-hall ion-source. J. Vac. Sci. Technol. A 5, 2081 (1987).CrossRefGoogle Scholar
37.Keller, J.H., Forster, J.C., and Barnes, M.S.: Novel radiofrequency induction plasma processing techniques. J. Vac. Sci. Technol. A 11, 2487 (1993).CrossRefGoogle Scholar
38.Petrov, I., Adibi, F., Greene, J.E., Hultman, L., and Sundgren, J.E.: Average energy deposited per atom—A universal parameter for describing ion-assisted film growth. Appl. Phys. Lett. 63, 36 (1993).CrossRefGoogle Scholar
39.Kester, D.J. and Messier, R.: Phase-control of cubic boron-nitride thin-films. J. Appl. Phys. 72, 504 (1992).CrossRefGoogle Scholar
40.Trinkaus, H.: Dynamics of viscoelastic flow in ion tracks: Origin of plastic deformation of amorphous materials. Nucl. Instrum. Methods Phys. Res., Sect. B 146, 204 (1998).CrossRefGoogle Scholar
41.Hofsass, H., Feldermann, H., Merk, R., Sebastian, M., and Ronning, C.: Cylindrical spike model for the formation of diamondlike thin films by ion deposition. Appl. Phys., A Mater. Sci. Process. 66, 153 (1998).Google Scholar
42.Miotello, A. and Kelly, R.: Revisiting the thermal-spike concept in ion-surface interactions. Nucl. Instrum. Methods Phys. Res., Sect. B 122, 458 (1997).CrossRefGoogle Scholar
43.Biersack, J.P. and Haggmark, L.G.: A Monte Carlo computer-program for the transport of energetic ions in amorphous targets. Nucl. Instrum. Methods 174, 257 (1980).CrossRefGoogle Scholar
44.Caturla, M.J., delaRubia, T.D., Marques, L.A., and Gilmer, G.H.: Ion-beam processing of silicon at keV energies: A molecular-dynamics study. Phys. Rev. B: Condens. Matter 54, 16683 (1996).CrossRefGoogle ScholarPubMed
45.Durand, H.A., Sekine, K., Etoh, K., Ito, K., and Kataoka, I.: Relation of initial thin film formation to defects induced by low-energy ions. Thin Solid Films 336, 42 (1998).CrossRefGoogle Scholar
46.Mayr, S.G. and Averback, R.S.: Evolution of morphology in nanocrystalline thin films during ion irradiation. Phys. Rev. B 68, 075419 (2003).CrossRefGoogle Scholar
47.Ji, H. and Was, G.S.: Linkage between crystallographic texture and surface roughness in niobium films synthesized by ion-beam-assisted deposition. Nucl. Instrum. Methods Phys. Res., Sect. B 148, 880 (1999).CrossRefGoogle Scholar
48.Telling, N.D., Guilfoyle, S.J., Lovett, D.R., Tang, C.C., Crapper, M.D., and Petty, M.: Evidence of roughness distributions and interface smoothing in Co/Cu multilayers deposited under energetic particle bombardment. J. Phys. D: Appl. Phys. 31, 472 (1998).CrossRefGoogle Scholar
49.Windischmann, H.: An intrinsic stress scaling law for polycrystalline thin-films prepared by ion-beam sputtering. J. Appl. Phys. 62, 1800 (1987).CrossRefGoogle Scholar
50.Windischmann, H.: Intrinsic stress in sputtered thin-films. J. Vac. Sci. Technol. A 9, 2431 (1991).CrossRefGoogle Scholar
51.Windischmann, H.: Intrinsic stress in sputter-deposited thin-films. Crit. Rev. Solid State Mater. Sci. 17, 547 (1992).CrossRefGoogle Scholar
52.Davis, C.A.: A simple-model for the formation of compressive stress in thin-films by ion-bombardment. Thin Solid Films 226, 30 (1993).CrossRefGoogle Scholar
53.Pauleau, Y.: Generation and evolution of residual stresses in physical vapour-deposited thin films. Vacuum 61, 175 (2001).CrossRefGoogle Scholar
54.Dheurle, F.M. and Harper, J.M.E.: Note on the origin of intrinsic stresses in films deposited via evaporation and sputtering. Thin Solid Films 171, 81 (1989).CrossRefGoogle Scholar
55.Shin, H.J., Cho, Y.J., Won, J.Y., Kang, H.J., Baeg, C.H., Hong, J.W., and Wey, M.Y.: Change of preferred orientation in TiN thin films grown by ultrahigh vacuum reactive ion-beam-assisted deposition. Nucl. Instrum. Methods Phys. Res., Sect. B 190, 807 (2002).CrossRefGoogle Scholar
56.Dong, L. and Srolovitz, D.J.: Texture development mechanisms in ion-beam-assisted deposition. J. Appl. Phys. 84, 5261 (1998).CrossRefGoogle Scholar
57.Lobl, P., Huppertz, M., and Mergel, D.: Nucleation and growth in TiO2 films prepared by sputtering and evaporation. Thin Solid Films 251, 72 (1994).CrossRefGoogle Scholar
58.Okumura, H., Ohta, K., Feuillet, G., Balakrishnan, K., Chichibu, S., Hamaguchi, H., Hacke, P., and Yoshida, S.: Growth and characterization of cubic GaN. J. Cryst. Growth 178, 113 (1997).CrossRefGoogle Scholar
59.Chhowalla, M., Robertson, J., Chen, C.W., Silva, S.R.P., Davis, C.A., Amaratunga, G.A.J., and Milne, W.I.: Influence of ion energy and substrate temperature on the optical and electronic properties of tetrahedral amorphous carbon (ta-C) films. J. Appl. Phys. 81, 139 (1997).CrossRefGoogle Scholar
60.Fallon, P.J., Veerasamy, V.S., Davis, C.A., Robertson, J., Amaratunga, G.A.J., Milne, W.I., and Koskinen, J.: Properties of filtered-ion-beam-deposited diamond-like carbon as a function of ion energy. Phys. Rev. B 48, 4777 (1993).CrossRefGoogle Scholar
61.Lifshitz, Y., Kasi, S.R., Rabalais, J.W., and Eckstein, W.: Subplantation model for film growth from hyperthermal species. Phys. Rev. B 41, 10468 (1990).CrossRefGoogle ScholarPubMed
62.Robertson, J.: Mechanism of sp(3) bond formation in the growth of diamond-like carbon. Diamond Relat. Mater. 14, 942 (2005).CrossRefGoogle Scholar
63.Robertson, J.: Diamond-like amorphous carbon. Mater. Sci. Eng. Rep. 37, 129 (2002).CrossRefGoogle Scholar
64.Yarbrough, W.A. and Messier, R.: Current issues and problems in the chemical vapor-deposition of diamond. Science 247, 688 (1990).CrossRefGoogle ScholarPubMed
65.Stoner, B.R., Ma, G.H.M., Wolter, S.D., and Glass, J.T.: Characterization of bias-enhanced nucleation of diamond on silicon by invacuo surface-analysis and transmission electron-microscopy. Phys. Rev. B 45, 11067 (1992).CrossRefGoogle ScholarPubMed
66.Garcia, M.M., Jimenez, I., Vazquez, L., Gomez-Aleixandre, C., Albella, J.M., Sanchez, O., Terminello, L.J., and Himpsel, F.J.: X-ray absorption spectroscopy and atomic force microscopy study of bias-enhanced nucleation of diamond films. Appl. Phys. Lett. 72, 2105 (1998).CrossRefGoogle Scholar
67.Robertson, J., Gerber, J., Sattel, S., Weiler, M., Jung, K., and Ehrhardt, H.: Mechanism of bias-enhanced nucleation of diamond on Si. Appl. Phys. Lett. 66, 3287 (1995).CrossRefGoogle Scholar
68.Garcia, M.M., Jimenez, I., Sanchez, O., Gomez-Aleixandre, C., and Vazquez, L.: Model of the bias-enhanced nucleation of diamond on silicon based on atomic force microscopy and x-ray-absorption studies. Phys. Rev. B 61, 10383 (2000).CrossRefGoogle Scholar
69.Li, Q., Marks, L.D., Lifshitz, Y., Lee, S.T., and Bello, I.: Controlling the nucleation environment of c-BN films and their related properties. Phys. Rev. B 65, 045415 (2002).CrossRefGoogle Scholar
70.Lossy, R., Pappas, D.L., Roy, R.A., and Cuomo, J.J.: Filtered arc deposition of amorphous diamond. Appl. Phys. Lett. 61, 171 (1992).CrossRefGoogle Scholar
71.Prawer, S., Nugent, K.W., Lifshitz, Y., Lempert, G.D., Grossman, E., Kulik, J., Avigal, I., and Kalish, R.: Systematic variation of the Raman spectra of DLC films as a function of sp(2):sp(3) composition. Diamond Relat. Mater. 5, 433 (1996).CrossRefGoogle Scholar
72.Lifshitz, Y., Lempert, G.D., Grossman, E., Avigal, I., Uzansaguy, C., Kalish, R., Kulik, J., Marton, D., and Rabalais, J.W.: Growth mechanisms of DLC films from C+ ions—Experimental studies. Diamond Relat. Mater. 4, 318 (1995).CrossRefGoogle Scholar
73.Funada, Y., Awazu, K., Shimamura, K., Watanabe, H., and Iwaki, M.: Diamond-like carbon thin-film formation by ion-beam-assisted deposition. Surf. Coat. Tech. 66, 514 (1994).CrossRefGoogle Scholar
74.Sjostrom, H., Hultman, L., Sundgren, J.E., Hainsworth, S.V., Page, T.F., and Theunissen, G.: Structural and mechanical properties of carbon nitride CNx (0.2≤x≤0.35) films. J. Vac. Sci. Technol. A 14, 56 (1996).CrossRefGoogle Scholar
75.Gago, R., Jimenez, I., Albella, J.M., Climent-Font, A., Caceres, D., Vergara, I., Banks, J.C., Doyle, B.L., and Terminello, L.J.: Bonding and hardness in nonhydrogenated carbon films with moderate sp(3) content. J. Appl. Phys. 87, 8174 (2000).CrossRefGoogle Scholar
76.Funada, Y., Awazu, K., Yasui, H., and Sugita, T.: Evaluation of raw hardness of DLC thin films prepared by IBAD. Nucl. Instrum. Methods Phys. Res., Sect. B 148, 664 (1999).CrossRefGoogle Scholar
77.Jun, Q., Luo, J.B., Wen, S.Z., Wang, J., and Li, W.Z.: Mechanical and tribological properties of non-hydrogenated DLC films synthesized by IBAD. Surf. Coat. Tech. 128, 324 (2000).CrossRefGoogle Scholar
78.Chen, Z.Y., Yu, Y.H., Zhao, J.P., Ren, C.X., Ding, X.Z., Shi, T.S., and Liu, X.H.: Optical study of low energy ion-beam-assisted deposited diamond-like carbon films. Nucl. Instrum. Methods Phys. Res., Sect. B 141, 144 (1998).CrossRefGoogle Scholar
79.Cui, F.Z. and Luo, Z.S.: Biomaterials modification by ion-beam processing. Surf. Coat. Tech. 112, 278 (1999).CrossRefGoogle Scholar
80.Li, D.J., Cui, F.Z., and Gu, H.Q.: Diamond-like carbon coating on poly(methylmethacrylate) prepared by ion beam deposition and ion-beam-assisted deposition and its effect on cell adhesion. J. Adhes. Sci. Technol. 13, 169 (1999).CrossRefGoogle Scholar
81.Funada, Y., Awazu, K., Yasui, H., and Sugita, T.: Adhesion strength of DLC films on glass with mixing layer prepared by IBAD. Surf. Coat. Tech. 128, 308 (2000).CrossRefGoogle Scholar
82.Wang, J., Li, W.Z., and Li, H.D.: Influence of the bombardment energy of CHn+ ions on the properties of diamond-like carbon films. Surf. Coat. Tech. 122, 273 (1999).CrossRefGoogle Scholar
83.Schwan, J., Ulrich, S., Roth, H., Ehrhardt, H., Silva, S.R.P., Robertson, J., Samlenski, R., and Brenn, R.: Tetrahedral amorphous carbon films prepared by magnetron sputtering and dc ion plating. J. Appl. Phys. 79, 1416 (1996).CrossRefGoogle Scholar
84.Lacerda, R.G., Hammer, P., Freire, F.L., Alvarez, F., and Marques, F.C.: On the structure of argon assisted amorphous carbon films. Diamond Relat. Mater. 9, 796 (2000).CrossRefGoogle Scholar
85.Jimenez, I., Garcia, M.M., Albella, J.M., and Terminello, L.J.: Orientation of graphitic planes during the bias-enhanced nucleation of diamond on silicon: An x-ray absorption near-edge study. Appl. Phys. Lett. 73, 2911 (1998).CrossRefGoogle Scholar
86.Jimenez, I., Gago, R., and Albella, J.M.: Fine structure at the X-ray absorption pi* and sigma* bands of amorphous carbon. Diamond Relat. Mater. 12, 110 (2003).CrossRefGoogle Scholar
87.Gago, R., Vinnichenko, M., Jager, H.U., Belov, A.Y., Jimenez, I., Huang, N., Sun, H., and Maitz, M.F.: Evolution of sp(2) networks with substrate temperature in amorphous carbon films: Experiment and theory. Phys. Rev. B 72, 014120 (2005).CrossRefGoogle Scholar
88.Britton, D.T., Harting, M., Hempel, M., Gxawu, D., and Uhlmann, K.: Defect characterisation in amorphous diamond-like carbon coatings. Appl. Surf. Sci. 149, 130 (1999).CrossRefGoogle Scholar
89.Viana, G.A., Lacerda, R.G., Freire, F.L., and Marques, F.C.: ESR investigation of graphite-like amorphous carbon films revealing itinerant states as the ones responsible for the signal. J. Non-Cryst. Solids 354, 2135 (2008).CrossRefGoogle Scholar
90.Lacerda, R.G., Hammer, P., Alvarez, F., and Marques, F.C.: Influence of stress on the electron core-level energies of noble gases implanted in hard amorphous carbon films. Diamond Relat. Mater. 10, 956 (2001).CrossRefGoogle Scholar
91.Li, Z.J., Pan, Z.Y., Wang, Y.X., Wei, Q., Zang, L.K., Ye, X.S., Bai, I., Wang, C., and Liu, J.R.: Investigation of ion-beam-assisted deposition of DLC films by molecular dynamics simulation. Surf. Coat. Tech. 192, 64 (2005).CrossRefGoogle Scholar
92.Sun, R., Yu, S.H., Du, R.X., and Xue, Q.J.: Friction and wear property of amorphous carbon films prepared by ion beam assisted deposition. Adv. Tribol. 676 (2009).CrossRefGoogle Scholar
93.Kai, H., Li, Y.C., Guo, D.C., Li, S., and Li, Z.J.: Molecular dynamics simulation of the structure characteristic of diamond-like carbon films influence by oblique incidence ion-beam-assisted deposition. Acta Phys. Sin. 58, 4888 (2009).CrossRefGoogle Scholar
94.Makowiecki, D.M., Jankowski, A.F., McKernan, M.A., and Foreman, R.J.: Magnetron sputtered boron films and Ti/B multilayer structures. J. Vac. Sci. Technol. B 8, 3910 (1990).CrossRefGoogle Scholar
95.Krishnan, S., Ansell, S., Felten, J.J., Volin, K.J., and Price, D.L.: Structure of liquid boron. Phys. Rev. Lett. 81, 586 (1998).CrossRefGoogle Scholar
96.Barth, M., Ensinger, W., Hoffmann, V., and Wolf, G.K.: Stress and adhesion of chromium and boron films deposited under ion-bombardment. Nucl. Instrum. Methods Phys. Res., Sect. B 59, 254 (1991).CrossRefGoogle Scholar
97.Winter, J.: Wall conditioning in fusion devices and its influence on plasma performance. Plasma Phys. Controlled Fusion 38, 1503 (1996).CrossRefGoogle Scholar
98.Satomi, N., Sato, S., Tanaka, K., Saidoh, M., and Nishikawa, M.: Mechanical properties of boron coatings. J. Nucl. Mater. 220, 752 (1995).CrossRefGoogle Scholar
99.Satomi, N., Tanaka, K., Kitamura, M., and Nishikawa, M.: Effect of irradiation ion species on internal stress in boron thin films. J. Nucl. Mater. 241, 1138 (1997).CrossRefGoogle Scholar
100.Kemi, H., Sasaki, C., Kitamura, M., Satomi, N., Ueda, Y., and Nishikawa, M.: Internal stress induced in the process of boron coating. J. Nucl. Mater. 266, 1108 (1999).CrossRefGoogle Scholar
101.Audronis, M., Kelly, P.J., Leyland, A., and Matthews, A.: A new approach to the deposition of elemental boron and boron-based coatings by pulsed magnetron sputtering of loosely packed boron powder targets. Plasma Process. Polym. 4, S160 (2007).CrossRefGoogle Scholar
102.Terminello, L.J., Chaiken, A., Lapianosmith, D.A., Doll, G.L., and Sato, T.: Morphology and bonding measured from boron-nitride powders and films using near-edge x-ray-absorption fine-structure. J. Vac. Sci. Technol. A 12, 2462 (1994).CrossRefGoogle Scholar
103.Mirkarimi, P.B., McCarty, K.F., and Medlin, D.L.: Review of advances in cubic boron nitride film synthesis. Mater. Sci. Eng., R 21, 47 (1997).CrossRefGoogle Scholar
104.Hofsass, H., Feldermann, H., Sebastian, M., and Ronning, C.: Thresholds for the phase formation of cubic boron nitride thin films. Phys. Rev. B 55, 13230 (1997).CrossRefGoogle Scholar
105.Kulisch, W. and Ulrich, S.: Parameter spaces for the nucleation and the subsequent growth of cubic boron nitride films. Thin Solid Films 423, 183 (2003).CrossRefGoogle Scholar
106.Robertson, J.: Deposition mechanism of cubic boron nitride. Diamond Relat. Mater. 5, 519 (1996).CrossRefGoogle Scholar
107.Feldermann, H., Merk, R., Hofsass, H., Ronning, C., and Zheleva, T.: Room temperature growth of cubic boron nitride. Appl. Phys. Lett. 74, 1552 (1999).CrossRefGoogle Scholar
108.Jimenez, I., Jankowski, A.F., Terminello, L.J., Sutherland, D.G.J., Carlisle, J.A., Doll, G.L., Tong, W.M., Shuh, D.K., and Himpsel, F.J.: Core-level photoabsorption study of defects and metastable bonding configurations in boron nitride. Phys. Rev. B 55, 12025 (1997).CrossRefGoogle Scholar
109.Jimenez, I., Jankowski, A., Terminello, L.J., Carlisle, J.A., Sutherland, D.G.J., Doll, G.L., Mantese, J.V., Tong, W.M., Shuh, D.K., and Himpsel, F.J.: Near-edge x-ray absorption fine structure study of bonding modifications in BN thin films by ion implantation. Appl. Phys. Lett. 68, 2816 (1996).CrossRefGoogle Scholar
110.Caretti, I. and Jimenez, I.: Point defects in hexagonal BN, BC(3) and BC(x)N compounds studied by x-ray absorption near-edge structure. J. Appl. Phys. 110, 023511 (2011).CrossRefGoogle Scholar
111.Kester, D.J., Ailey, K.S., Lichtenwalner, D.J., and Davis, R.F.: Growth and characterization of cubic boron-nitride thin-films. J. Vac. Sci. Technol. A 12, 3074 (1994).CrossRefGoogle Scholar
112.Yamashita, H., Kuroda, K., Saka, H., Yamashita, N., Watanabe, T., and Wada, T.: Cross-sectional transmission electron-microscopy observations of c-BN films deposited on Si by ion-beam-assisted deposition. Thin Solid Films 253, 72 (1994).CrossRefGoogle Scholar
113.Zhang, X.W., Boyen, H.G., Yin, H., Ziemann, P., and Banhart, F.: Microstructure of the intermediate turbostratic boron nitride layer. Diamond Relat. Mater. 14, 1474 (2005).CrossRefGoogle Scholar
114.Djouadi, M.A., Vasin, A., Nouveau, C., Angleraud, B., and Tessier, P.Y.: Deposition of boron nitride films by PVD methods: Transition from h-BN to c-BN. Surf. Coat. Tech. 180, 174 (2004).CrossRefGoogle Scholar
115.Doll, G.L., Sell, J.A., Taylor, C.A., and Clarke, R.: Growth and characterization of epitaxial cubic boron-nitride films on silicon. Phys. Rev. B 43, 6816 (1991).CrossRefGoogle ScholarPubMed
116.Klett, A., Freudenstein, R., Plass, M.F., and Kulisch, W.: Stress of c-BN thin films: A parameter investigation. Surf. Coat. Tech. 116, 86 (1999).CrossRefGoogle Scholar
117.Gago, R., Abendroth, B., Cerda, J.I., Jimenez, I., and Moller, W.: Detection of intrinsic stress in cubic boron nitride films by x-ray absorption near-edge structure: Stress relaxation mechanisms by simultaneous ion implantation during growth. Phys. Rev. B 76, 174111 (2007).CrossRefGoogle Scholar
118.Mirkarimi, P.B., Medlin, D.L., McCarty, K.F., Dibble, D.C., Clift, W.M., Knapp, J.A., and Barbour, J.C.: The synthesis, characterization, and mechanical properties of thick, ultrahard cubic boron nitride films deposited by ion-assisted sputtering. J. Appl. Phys. 82, 1617 (1997).CrossRefGoogle Scholar
119.Yamamoto, K., Keunecke, M., and Bewilogua, K.: Deposition of well adhering cBN films up to 2 μm thickness by B-C-N gradient layer system. Thin Solid Films 377, 331 (2000).CrossRefGoogle Scholar
120.Widmayer, P., Ziemann, P., Ulrich, S., and Ehrhardt, H.: Phase stability and stress relaxation effects of cubic boron nitride thin films under 350 keV ion irradiation. Diamond Relat. Mater. 6, 621 (1997).CrossRefGoogle Scholar
121.Ullmann, J., Kellock, A.J., and Baglin, J.E.E.: Reduction of intrinsic stress in cubic boron nitride films. Thin Solid Films 341, 238 (1999).CrossRefGoogle Scholar
122.Fitz, C., Fukarek, W., Kolitsch, A., and Moller, W.: Investigation on stress evolution in boron nitride films. Surf. Coat. Tech. 128, 292 (2000).CrossRefGoogle Scholar
123.Abendroth, B., Gago, R., Kolitsch, A., and Moller, W.: Stress measurement and stress relaxation during magnetron sputter deposition of cubic boron nitride thin films. Thin Solid Films 447, 131 (2004).CrossRefGoogle Scholar
124.Solozhenko, V.L. and Kurakevych, O.O.: Chemical interaction in the B-BN system at high pressures and temperatures. Synthesis of novel boron subnitrides. J. Solid State Chem. 182, 1359 (2009).CrossRefGoogle Scholar
125.Caretti, I. and Jimenez, I.: Composition and bonding structure of boron nitride B(1-x)N(x) thin films grown by ion-beam assisted evaporation. Chem. Phys. Lett. 511, 235 (2011).CrossRefGoogle Scholar
126.Lazzari, R., Vast, N., Besson, J.M., Baroni, S., and Dal Corso, A.: Atomic structure and vibrational properties of icosahedral B4C boron carbide. Phys. Rev. Lett. 83, 3230 (1999).CrossRefGoogle Scholar
127.McKernan, M.A.: Magnetron sputter deposition of boron and boron carbide. Surf. Coat. Tech. 49, 411 (1991).CrossRefGoogle Scholar
128.Pascual, E., Martinez, E., Esteve, J., and Lousa, A.: Boron carbide thin films deposited by tuned-substrate RF magnetron sputtering. Diamond Relat. Mater. 8, 402 (1999).CrossRefGoogle Scholar
129.Caretti, I., Fanegas, N., Martin, Z., Torres, R., and Jimenez, I.: X-ray emission by electron impact as a surface characterization tool for the light elements B, C, N and O: Sensitivity factors and effective attenuation length. J. Anal. At. Spectrom. 25, 150 (2010).CrossRefGoogle Scholar
130.Bao, R.Q. and Chrisey, D.B.: Short range order structure of amorphous B4C boron carbide thin films. J. Mater. Sci. 46, 3952 (2011).CrossRefGoogle Scholar
131.Todorov, S.S., Marton, D., Boyd, K.J., Albayati, A.H., and Rabalais, J.W.: Computer-simulation of the ion-beam deposition of binary thin-films—Carbon nitride and boron carbide. J. Vac. Sci. Technol. A 12, 3192 (1994).CrossRefGoogle Scholar
132.Ronning, C., Schwen, D., Eyhusen, S., Vetter, U., and Hofsass, H.: Ion beam synthesis of boron carbide thin films. Surf. Coat. Tech. 158, 382 (2002).CrossRefGoogle Scholar
133.Caretti, I., Gago, R., Albella, J.M., and Jimenez, I.: Boron carbides formed by coevaporation of B and C atoms: Vapor reactivity, BxC1-x composition, and bonding structure. Phys. Rev. B 77, 174109 (2008).CrossRefGoogle Scholar
134.Ulrich, S., Ehrhardt, H., Schwan, J., Samlenski, R., and Brenn, R.: Subplantation effect in magnetron sputtered superhard boron carbide thin films. Diamond Relat. Mater. 7, 835 (1998).CrossRefGoogle Scholar
135.Reigada, D.C., Prioli, R., Jacobsohn, L.G., and Freire, F.L.: Boron carbide films deposited by a magnetron sputter-ion plating process: Film composition and tribological properties. Diamond Relat. Mater. 9, 489 (2000).CrossRefGoogle Scholar
136.Kulikovsky, V., Vorlicek, V., Bohac, R., Ctvrtlik, R., Stranyanek, M., Dejneka, A., and Jastrabik, L.: Mechanical properties and structure of amorphous and crystalline B4C films. Diamond Relat. Mater. 18, 27 (2009).CrossRefGoogle Scholar
137.Zhou, M.J., Wong, S.F., Ong, C.W., and Li, Q.: Microstructure and mechanical properties of B4C films deposited by ion beam sputtering. Thin Solid Films 516, 336 (2007).CrossRefGoogle Scholar
138.Yanagisawa, H., Tanaka, T., Ishida, Y., Matsue, M., Rokuta, E., Otani, S., and Oshima, C.: Phonon dispersion curves of a BC3 honeycomb epitaxial sheet. Phys. Rev. Lett. 93, 177003 (2004).CrossRefGoogle ScholarPubMed
139.Solozhenko, V.L., Kurakevych, O.O., Andrault, D., Le Godec, Y., and Mezouar, M.: Ultimate metastable solubility of boron in diamond: Synthesis of superhard diamondlike BC5. Phys. Rev. Lett. 102, 015506 (2009).CrossRefGoogle ScholarPubMed
140.Jacobsohn, L.G., Schulze, R.K., da Costa, M., and Nastasi, M.: X-ray photoelectron spectroscopy investigation of boron carbide films deposited by sputtering. Surf. Sci. 572, 418 (2004).CrossRefGoogle Scholar
141.Bao, R.Q. and Chrisey, D.B.: Chemical states of carbon in amorphous boron carbide thin films deposited by radio frequency magnetron sputtering. Thin Solid Films 519, 164 (2010).CrossRefGoogle Scholar
142.Jimenez, I., Sutherland, D.G.J., van Buuren, T., Carlisle, J.A., Terminello, L.J., and Himpsel, F.J.: Photoemission and x-ray-absorption study of boron carbide and its surface thermal stability. Phys. Rev. B 57, 13167 (1998).CrossRefGoogle Scholar
143.Jimenez, I., Terminello, L.J., Himpsel, F.J., Grush, M., and Callcott, T.A.: Photoemission, x-ray absorption and x-ray emission study of boron carbides. J. Electron Spectrosc. Relat. Phenom. 103, 611 (1999).CrossRefGoogle Scholar
144.Liu, A.Y. and Cohen, M.L.: Prediction of new low compressibility solids. Science 245, 841 (1989).CrossRefGoogle ScholarPubMed
145.Chowdhury, A., Cameron, D.C., Hashmi, M.S.J., and Gregg, J.M.: Evidence for continuous areas of crystalline beta-C3N4 in sputter-deposited thin films. J. Mater. Res. 14, 2359 (1999).CrossRefGoogle Scholar
146.Kouvetakis, J., Bandari, A., Todd, M., Wilkens, B., and Cave, N.: Novel synthetic routes to carbon-nitrogen thin-films. Chem. Mater. 6, 811 (1994).CrossRefGoogle Scholar
147.Gillan, E.G.: Synthesis of nitrogen-rich carbon nitride networks from an energetic molecular azide precursor. Chem. Mater. 12, 3906 (2000).CrossRefGoogle Scholar
148.Malkow, T., Arce-Garcia, I., Kolitsch, A., Schneider, D., Bull, S.J., and Page, T.F.: Mechanical properties and characterisation of very thin CNx films synthesised by IBAD. Diamond Relat. Mater. 10, 2199 (2001).CrossRefGoogle Scholar
149.Jimenez, I., Tong, W.M., Shuh, D.K., Holloway, B.C., Kelly, M.A., Pianetta, P., Terminello, L.J., and Himpsel, F.J.: Bonding modifications in carbon nitride films induced by thermal annealing: An x-ray absorption near edge study. Appl. Phys. Lett. 74, 2620 (1999).CrossRefGoogle Scholar
150.Alonso, F., Gago, R., Jimenez, I., Gomez-Aleixandre, C., Kreissig, U., and Albella, J.M.: On the bonding structure of hydrogenated carbon nitrides grown by electron cyclotron resonance chemical vapour deposition: Towards the synthesis of non-graphitic carbon nitrides. Diamond Relat. Mater. 11, 1161 (2002).CrossRefGoogle Scholar
151.Camero, M., Buijnsters, J.G., Gomez-Aleixandre, C., Gago, R., Caretti, I., and Jimenez, I.: The effect of nitrogen incorporation on the bonding structure of hydrogenated carbon nitride films. J. Appl. Phys. 101, 063515 (2007).CrossRefGoogle Scholar
152.Gago, R., Jimenez, I., and Albella, J.M.: Detecting with X-ray absorption spectroscopy the modifications of the bonding structure of graphitic carbon by amorphisation, hydrogenation and nitrogenation. Surf. Sci. 482, 530 (2001).CrossRefGoogle Scholar
153.Hammer, P., Victoria, N.M., and Alvarez, F.: Electronic structure of hydrogenated carbon nitride films. J. Vac. Sci. Technol. A 16, 2941 (1998).CrossRefGoogle Scholar
154.Hammer, P., Victoria, N.M., and Alvarez, F.: Hydrogen induced changes on the electronic structure of carbon nitride films. J. Non-Cryst. Solids 227, 645 (1998).CrossRefGoogle Scholar
155.Wang, E.G.: Research on carbon nitrides. Prog. Mater. Sci. 41, 241 (1997).CrossRefGoogle Scholar
156.Muhl, S. and Mendez, J.M.: A review of the preparation of carbon nitride films. Diamond Relat. Mater. 8, 1809 (1999).CrossRefGoogle Scholar
157.Ronning, C., Feldermann, H., Merk, R., Hofsass, H., Reinke, P., and Thiele, J.U.: Carbon nitride deposited using energetic species: A review on XPS studies. Phys. Rev. B 58, 2207 (1998).CrossRefGoogle Scholar
158.Ferrari, A.C., Rodil, S.E., and Robertson, J.: Interpretation of infrared and Raman spectra of amorphous carbon nitrides. Phys. Rev. B 67, 155306 (2003).CrossRefGoogle Scholar
159.Jimenez, I., Gago, R., Albella, J.M., Caceres, D., and Vergara, I.: Spectroscopy of pi bonding in hard graphitic carbon nitride films: Superstructure of basal planes and hardening mechanisms. Phys. Rev. B 62, 4261 (2000).CrossRefGoogle Scholar
160.Jimenez, I., Gago, R., Albella, J.M., and Terminello, L.J.: X-ray absorption studies of bonding environments in graphitic carbon nitride. Diamond Relat. Mater. 10, 1170 (2001).CrossRefGoogle Scholar
161.Hellgren, N., Guo, J., Sathe, C., Agui, A., Nordgren, J., Luo, Y., Agren, H., and Sundgren, J.E.: Nitrogen bonding structure in carbon nitride thin films studied by soft x-ray spectroscopy. Appl. Phys. Lett. 79, 4348 (2001).CrossRefGoogle Scholar
162.Sanchez-Lopez, J.C., Donnet, C., Lefebvre, F., Fernandez-Ramos, C., and Fernandez, A.: Bonding structure in amorphous carbon nitride: A spectroscopic and nuclear magnetic resonance study. J. Appl. Phys. 90, 675 (2001).CrossRefGoogle Scholar
163.Gammon, W.J., Hoatson, G.L., Holloway, B.C., Vold, R.L., and Reilly, A.C.: Bonding in hard and elastic amorphous carbon nitride films investigated using N-15, C-13, and H-1 NMR spectroscopy. Phys. Rev. B 68, 195401 (2003).CrossRefGoogle Scholar
164.Rodil, S.E. and Muhl, S.: Bonding in amorphous carbon nitride. Diamond Relat. Mater. 13, 1521 (2004).CrossRefGoogle Scholar
165.Sjostrom, H., Stafstrom, S., Boman, M., and Sundgren, J.E.: Superhard and elastic carbon nitride thin-films having fullerene-like microstructure. Phys. Rev. Lett. 75, 1336 (1995).CrossRefGoogle Scholar
166.Hellgren, N., Johansson, M.P., Broitman, E., Hultman, L., and Sundgren, J.E.: Role of nitrogen in the formation of hard and elastic CNx thin films by reactive magnetron sputtering. Phys. Rev. B 59, 5162 (1999).CrossRefGoogle Scholar
167.Gago, R., Abrasonis, G., Mucklich, A., Moller, W., Czigany, Z., and Radnoczi, G.: Fullerenelike arrangements in carbon nitride thin films grown by direct ion beam sputtering. Appl. Phys. Lett. 87, 071901 (2005).CrossRefGoogle Scholar
168.Gago, R., Jimenez, I., Caceres, D., Agullo-Rueda, F., Sajavaara, T., Albella, J.M., Climent-Font, A., Vergara, I., Raisanen, J., and Rauhala, E.: Hardening mechanisms in graphitic carbon nitride films grown with N-2/Ar ion assistance. Chem. Mater. 13, 129 (2001).CrossRefGoogle Scholar
169.Hu, J.T., Yang, P.D., and Lieber, C.M.: Nitrogen-driven sp(3) to sp(2) transformation in carbon nitride materials. Phys. Rev. B 57, R3185 (1998).CrossRefGoogle Scholar
170.Neidhardt, J., Czigany, Z., Brunell, I.F., and Hultman, L.: Growth of fullerene-like carbon nitride thin solid films by reactive magnetron sputtering; role of low-energy ion irradiation in determining microstructure and mechanical properties. J. Appl. Phys. 93, 3002 (2003).CrossRefGoogle Scholar
171.Gago, R., Jimenez, I., Neidhardt, J., Abendroth, B., Caretti, I., Hultman, L., and Moller, W.: Correlation between bonding structure and microstructure in fullerenelike carbon nitride thin films. Phys. Rev. B 71, 125414 (2005).CrossRefGoogle Scholar
172.Hammer, P. and Gissler, W.: Chemical sputtering of carbon films by low energy N-2(+) ion bombardment. Diamond Relat. Mater. 5, 1152 (1996).CrossRefGoogle Scholar
173.Hammer, P. and Alvarez, F.: Influence of chemical sputtering on the composition and bonding structure of carbon nitride films. Thin Solid Films 398, 116 (2001).CrossRefGoogle Scholar
174.Hellgren, N., Johansson, M.P., Broitman, E., Sandstrom, P., Hultman, L., and Sundgren, J.E.: Effect of chemical sputtering on the growth and structural evolution of magnetron sputtered CNx thin films. Thin Solid Films 382, 146 (2001).CrossRefGoogle Scholar
175.Gago, R., Jimenez, I., Agullo-Rueda, F., Albella, J.M., Czigany, Z., and Hultman, L.: Transition from amorphous boron carbide to hexagonal boron carbon nitride thin films induced by nitrogen ion assistance. J. Appl. Phys. 92, 5177 (2002).CrossRefGoogle Scholar
176.Solozhenko, V.L., Andrault, D., Fiquet, G., Mezouar, M., and Rubie, D.C.: Synthesis of superhard cubic BC2N. Appl. Phys. Lett. 78, 1385 (2001).CrossRefGoogle Scholar
177.Tateyama, Y., Ogitsu, T., Kusakabe, K., Tsuneyuki, S., and Itoh, S.: Proposed synthesis path for heterodiamond BC2N. Phys. Rev. B 55, 10161 (1997).CrossRefGoogle Scholar
178.Sun, H., Jhi, S.H., Roundy, D., Cohen, M.L., and Louie, S.G.: Structural forms of cubic BC2N. Phys. Rev. B 64, 094108 (2001).CrossRefGoogle Scholar
179.Liu, A.Y., Wentzcovitch, R.M., and Cohen, M.L.: Atomic arrangement and electronic structure of BC2N. Phys. Rev. B 39, 1760 (1989).CrossRefGoogle ScholarPubMed
180.Watanabe, M.O., Itoh, S., Mizushima, K., and Sasaki, T.: Bonding characterization of BC2N thin films. Appl. Phys. Lett. 68, 2962 (1996).CrossRefGoogle Scholar
181.Hellgren, N., Berlind, T., Gueorguiev, G.K., Johansson, M.P., Stafstrom, S., and Hultman, L.: Fullerene-like B-C-N thin films: A computational and experimental study. Mater. Sci. Eng., B 113, 242 (2004).CrossRefGoogle Scholar
182.Kaner, R.B., Kouvetakis, J., Warble, C.E., Sattler, M.L., and Bartlett, N.: Boron-carbon-nitrogen materials of graphite-like structure. Mater. Res. Bull. 22, 399 (1987).CrossRefGoogle Scholar
183.Weber, A., Bringmann, U., Nikulski, R., and Klages, C.P.: Growth of cubic boron nitride and boron carbon-nitrogen coatings using N-trimethylborazine in an electron cyclotron resonance plasma process. Diamond Relat. Mater. 2, 201 (1993).CrossRefGoogle Scholar
184.Kawaguchi, M., Kawashima, T., and Nakajima, T.: Syntheses and structures of new graphite-like materials of composition BCN(H) and BC3N(H). Chem. Mater. 8, 1197 (1996).CrossRefGoogle Scholar
185.Polo, M.C., Martinez, E., Esteve, J., and Andujar, J.L.: Preparation of B-C-N thin films by rf plasma assisted CVD. Diamond Relat. Mater. 7, 376 (1998).CrossRefGoogle Scholar
186.Gago, R., Jimenez, I., and Albella, J.M.: Boron-carbon-nitrogen compounds grown by ion beam assisted evaporation. Thin Solid Films 373, 277 (2000).CrossRefGoogle Scholar
187.Yasui, H., Hirose, Y., Awazu, K., and Iwaki, M.: The properties of BCN films formed by ion-beam-assisted deposition. Colloids Surf., B 19, 291 (2000).CrossRefGoogle ScholarPubMed
188.Gago, R., Jimenez, I., Garcia, I., and Albella, J.M.: Growth and characterisation of boron-carbon-nitrogen coatings obtained by ion beam assisted evaporation. Vacuum 64, 199 (2002).CrossRefGoogle Scholar
189.Johansson, M.P., Ivanov, I., Hultman, L., Munger, E.P., and Schutze, A.: Low-temperature deposition of cubic BN:C films by unbalanced direct current magnetron sputtering of a B4C target. J. Vac. Sci. Technol. A 14, 3100 (1996).CrossRefGoogle Scholar
190.Gago, R., Jimenez, I., Albella, J.M., and Terminello, L.J.: Identification of ternary boron-carbon-nitrogen hexagonal phases by x-ray absorption spectroscopy. Appl. Phys. Lett. 78, 3430 (2001).CrossRefGoogle Scholar
191.Gago, R., Jimenez, I., Sajavaara, T., Rauhala, E., and Albella, J.M.: X-ray absorption studies of cubic boron-carbon-nitrogen films grown by ion beam assisted evaporation. Diamond Relat. Mater. 10, 1165 (2001).CrossRefGoogle Scholar
192.Gago, R., Jimenez, I., Kreissig, U., and Albella, J.M.: X-ray absorption study of the bonding structure of BCN compounds enriched in carbon by CH4 ion assistance. Diamond Relat. Mater. 11, 1295 (2002).CrossRefGoogle Scholar
193.Ulrich, S., Ehrhardt, H., Theel, T., Schwan, J., Westermeyr, S., Scheib, M., Becker, P., Oechsner, H., Dollinger, G., and Bergmaier, A.: Phase separation in magnetron sputtered superhard BCN thin films. Diamond Relat. Mater. 7, 839 (1998).CrossRefGoogle Scholar
194.Caretti, I., Jimenez, I., and Albella, J.M.: BCN films with controlled composition obtained by the interaction between molecular beams of B and C with nitrogen ion beams. Diamond Relat. Mater. 12, 1079 (2003).CrossRefGoogle Scholar
195.Knotek, O., Lugscheider, E., and Siry, C.W.: Superhard PVD coatings in the B-N-C triangle. Int. J. Refract. Met. Hard Mater. 17, 157 (1999).CrossRefGoogle Scholar
196.Zhou, Z.F., Bello, I., Lei, M.K., Li, K.Y., Lee, C.S., and Lee, S.T.: Synthesis and characterization of boron carbon nitride films by radio frequency magnetron sputtering. Surf. Coat. Tech. 128, 334 (2000).CrossRefGoogle Scholar
197.Ulrich, S., Kratzsch, A., Leiste, H., Stuber, M., Schlossmacher, P., Holleck, H., Binder, J., Schild, D., Westermeyer, S., Becker, P., and Oechsner, H.: Variation of carbon concentration, ion energy, and ion-current density of magnetron-sputtered boron carbonitride films. Surf. Coat. Tech. 116, 742 (1999).CrossRefGoogle Scholar
198.Linss, V., Rodil, S.E., Reinke, P., Garnier, M.G., Oelhafen, P., Kreissig, U., and Richter, F.: Bonding characteristics of DC magnetron sputtered B-C-N thin films investigated by Fourier-transformed infrared spectroscopy and X-ray photoelectron spectroscopy. Thin Solid Films 467, 76 (2004).CrossRefGoogle Scholar
199.Linss, V., Hermann, I., Schwarzer, N., Kreissig, U., and Richter, F.: Mechanical properties of thin films in the ternary triangle B-C-N. Surf. Coat. Tech. 163, 220 (2003).CrossRefGoogle Scholar
200.Linss, V., Barzola-Quiquia, J., Haussler, P., and Richter, F.: Structural properties of d.c. magnetron sputtered B-C-N thin films and correlation to their mechanical properties: A new empirical formula. Thin Solid Films 467, 66 (2004).CrossRefGoogle Scholar
201.Morant, C., Prieto, P., Bareno, J., Sanz, J.M., and Elizalde, E.: Hard BCxNy thin films grown by dual ion beam sputtering. Thin Solid Films 515, 207 (2006).CrossRefGoogle Scholar
202.Caretti, I., Torres, R., Gago, R., Landa-Canovas, A.R., and Jimenez, I.: Effect of carbon incorporation on the microstructure of BCxN (x=0.25, 1, and 4) ternary solid solutions studied by transmission electron microscopy. Chem. Mater. 22, 1949 (2010).CrossRefGoogle Scholar
203.Ci, L., Song, L., Jin, C.H., Jariwala, D., Wu, D.X., Li, Y.J., Srivastava, A., Wang, Z.F., Storr, K., Balicas, L., Liu, F., and Ajayan, P.M.: Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9, 430 (2010).CrossRefGoogle ScholarPubMed
204.Zhou, F., Adachi, K., and Kato, K.: Influence of deposition parameters on surface roughness and mechanical properties of boron carbon nitride coatings synthesized by ion-beam-assisted deposition. Thin Solid Films 497, 210 (2006).CrossRefGoogle Scholar
205.Zhou, F., Adachi, K., and Kato, K.: Comparisons of tribological property of a-C, a-CNx and BCN coatings sliding against SiC balls in water. Surf. Coat. Tech. 200, 4471 (2006).CrossRefGoogle Scholar
206.Chen, X.Y., Wang, Z.H., Ma, S.L., Ji, V., and Chu, P.K.: Microstructure and tribological properties of ternary BCN thin films with different carbon contents. Diamond Relat. Mater. 19, 1225 (2010).CrossRefGoogle Scholar
207.Caretti, I., Jimenez, I., Gago, R., Caceres, D., Abendroth, B., and Albella, J.M.: Tribological properties of ternary BCN films with controlled composition and bonding structure. Diamond Relat. Mater. 13, 1532 (2004).CrossRefGoogle Scholar
208.Caretti, I., Albella, J.M., and Jimenez, I.: Tribological study of amorphous BC4N coatings. Diamond Relat. Mater. 16, 63 (2007).CrossRefGoogle Scholar
209.Caretti, I., Albella, J.M., and Jimenez, I.: Friction and wear of amorphous BC4N coatings under different atmospheres. Diamond Relat. Mater. 16, 1445 (2007).CrossRefGoogle Scholar
210.Chen, Y.M., Zeng, Z.X., Yang, S.R., and Zhang, J.Y.: The tribological performance of BCN films under ionic liquids lubrication. Diamond Relat. Mater. 18, 20 (2009).CrossRefGoogle Scholar
211.Aoki, H., Watanabe, D., Moriyama, R., Mazumder, M.K., Komatsu, N., Kimura, C., and Sugino, T.: Influence of moisture on BCN (low-K) film for interconnection reliability. Diamond Relat. Mater. 17, 628 (2008).CrossRefGoogle Scholar
212.Ishikawa, M., Nakamura, T., Morita, M., Matsuda, Y., Tsujioka, S., and Kawashima, T.: Boron-carbon-nitrogen compounds as negative electrode matrices for rechargeable lithium battery systems. J. Power Sources 55, 127 (1995).CrossRefGoogle Scholar
213.Ong, C.W., Chan, K.F., Zhao, X.A., and Choy, C.L.: Physical properties of room temperature deposited B-C-N-O films prepared by dual-ion-beam deposition. Surf. Coat. Tech. 115, 145 (1999).CrossRefGoogle Scholar
214.Vlcek, J., Potocky, S., Cizek, J., Houska, J., Kormunda, M., Zeman, P., Perina, V., Zemek, J., Setsuhara, Y., and Konuma, S.: Reactive magnetron sputtering of hard Si-B-C-N films with a high-temperature oxidation resistance. J. Vac. Sci. Technol. A 23, 1513 (2005).CrossRefGoogle Scholar
215.Vyas, A., Lu, Y.H., and Shen, Y.G.: Mechanical and tribological properties of multicomponent Ti-B-C-N thin films with varied C contents. Surf. Coat. Tech. 204, 1528 (2010).CrossRefGoogle Scholar
216.Kim, S.I. and Lee, C.W.: Nitrogen impurity effects of W-B-C-N quaternary thin film for diffusion barrier for Cu metallization. J. Electroceram. 23, 484 (2009).CrossRefGoogle Scholar
217.Yu, J., Ahn, J., Yoon, S.F., Zhang, Q., Rusli, , Gan, B., Chew, K., Yu, M.B., Bai, X.D., and Wang, E.G.: Semiconducting boron carbonitride nanostructures: Nanotubes and nanofibers. Appl. Phys. Lett. 77, 1949 (2000).CrossRefGoogle Scholar
218.Torres, R., Caretti, I., Gago, R., Martin, Z., and Jimenez, I.: Bonding structure of BCN nanopowders prepared by ball milling. Diamond Relat. Mater. 16, 1450 (2007).CrossRefGoogle Scholar
219.Venu, K., Kanuri, S., Raidongia, K., Hembram, K., Waghmare, U.V., and Datta, R.: Band gap and chemically ordered domain structure of a graphene analogue BxCyNz. Solid State Commun. 150, 2262 (2010).CrossRefGoogle Scholar
220.Jankowski, A.F., Schrawyer, L.R., and Wall, M.A.: Structural stability of heat-treated W/C and W/B4C multilayers. J. Appl. Phys. 68, 5162 (1990).CrossRefGoogle Scholar
221.Jankowski, A.F. and Hayes, J.P.: Chemical bonding in hard boron hexagonal boron nitride multilayers. Diamond Relat. Mater. 7, 380 (1998).CrossRefGoogle Scholar
222.Andrievski, R.A.: Nanostructured superhard films as typical nanomaterials. Surf. Coat. Tech. 201, 6112 (2007).CrossRefGoogle Scholar
223.Guruz, M.U., Dravid, V.P., and Chung, Y.W.: Synthesis and characterization of single and multilayer boron nitride and boron carbide thin films grown by magnetron sputtering of boron carbide. Thin Solid Films 414, 129 (2002).CrossRefGoogle Scholar
224.Kurooka, S., Ikeda, T., and Iwamoto, N.: Synthesis and Properties of BN, BCN and B/BN Thin Films Deposited by Ion Beam Sputtering Method (Minerals, Metals and Materials Society, Warrendale, PA, 2000).Google Scholar
225.Miyake, S.: Improvement of mechanical properties of nanometer period multilayer films at interfaces of each layer. J. Vac. Sci. Technol. B 21, 785 (2003).CrossRefGoogle Scholar
226.Miyake, S.: Tribology of carbon nitride and boron nitride nanoperiod multilayer films and its application to nanoscale processing. Thin Solid Films 493, 160 (2005).CrossRefGoogle Scholar
227.Johansson, M.P., Hellgren, N., Berlind, T., Broitman, E., Hultman, L., and Sundgren, J.E.: Growth of CNx/BN: C multilayer films by magnetron sputtering. Thin Solid Films 360, 17 (2000).CrossRefGoogle Scholar
228.Moreno, H., Caicedo, J.C., Amaya, C., Cabrera, G., Yate, L., Aperador, W., and Prieto, P.: Improvement of the electrochemical behavior of steel surfaces using a TiN BCN/BN (n)/c-BN multilayer system. Diamond Relat. Mater. 20, 588 (2011).CrossRefGoogle Scholar
229.Bejarano, G., Caicedo, J.M., Baca, E., Prieto, P., Balogh, A.G., and Enders, S.: Deposition of B4C/BCN/c-BN multilayered thin films by r.f. magnetron sputtering. Thin Solid Films 494, 53 (2006).CrossRefGoogle Scholar
230.Morant, C., Caceres, D., Sanz, J.M., and Elizalde, E.: Nano-mechanical properties of BCN/CN/BN multilayer films. Diamond Relat. Mater. 16, 1441 (2007).CrossRefGoogle Scholar
231.Kratzsch, A., Ulrich, S., Leiste, H., Stuber, M., and Holleck, H.: Stress reduction in boron carbonitride films by ion energy-modulated multilayers. Surf. Coat. Tech. 116, 253 (1999).CrossRefGoogle Scholar
232.Fayeulle, S. and Nastasi, M.: Stress in dc sputtered TiN/B-C-N multilayers. J. Appl. Phys. 81, 6703 (1997).CrossRefGoogle Scholar
233.Yamamoto, K., Kujime, S., and Takahara, K.: Properties of nano-multilayered hard coatings deposited by a new hybrid coating process: Combined cathodic arc and unbalanced magnetron sputtering. Surf. Coat. Tech. 200, 435 (2005).CrossRefGoogle Scholar
234.Yamamoto, K., Ito, H., and Kujime, S.: Nano-multilayered CrN/BCN coating for anti-wear and low friction applications. Surf. Coat. Tech. 201, 5244 (2007).CrossRefGoogle Scholar