Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T15:17:03.473Z Has data issue: false hasContentIssue false

Synthesis of Nd2Fe14B powders by spray-drying and reduction–diffusion processes

Published online by Cambridge University Press:  31 January 2011

X. L. Dong
Affiliation:
Korea Institute of Machinery and Materials, 66 Sangnam-Dong, Changwon, Kyungnam, Korea and Laboratory of Ultrafine Particles, Shenyang Polytechnic University, 110023, Shenyang, People's Republic of China
B. K. Kim
Affiliation:
Korea Institute of Machinery and Materials, 66 Sangnam-Dong, Changwon, Kyungnam, Korea
C. J. Choi
Affiliation:
Korea Institute of Machinery and Materials, 66 Sangnam-Dong, Changwon, Kyungnam, Korea
K. S. Park
Affiliation:
Korea Institute of Machinery and Materials, 66 Sangnam-Dong, Changwon, Kyungnam, Korea
Z. D. Zhang
Affiliation:
International Centre for Materials Physics, Institute of Metal Research, Academia Sinica, 110015, Shenyang, People's Republic of China
Get access

Abstract

The magnetic Nd–Fe–B powders were prepared by a mechanochemical method, including the processes of spray drying, debinding, milling, H2 reduction, Ca reduction, and washing. The liquid solution dissolved with various metal salts was first spray-dried to prepare the precursor powders having uniformly dispersed Nd, Fe, and B components. The precursor powders in turn were subjected to the subsequent processes. The particle size of the resultant Nd–Fe–B powders was about 1 μm. Effects of the process parameters on phases, morphologies, microstructures, compositions, and thermal properties of the powders were investigated.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sagawa, M., Fujimura, S., Togawa, M., Yamamoto, H., and Matsuura, Y., J. Appl. Phys. 55, 2083 (1984).CrossRefGoogle Scholar
2.Croat, J.J., Herbst, J.F., Lee, R.W., and Pinkerton, F.E., J. Appl. Phys. 55, 2078 (1984).CrossRefGoogle Scholar
3.Hadjipanayis, G.C., Hazelton, R.C., and Lawless, K.P., J. Appl. Phys. 55, 2073 (1984).CrossRefGoogle Scholar
4.Koon, N.C. and Das, B.N., J. Appl. Phys. 55, 2063 (1984).CrossRefGoogle Scholar
5.I’Héritier, Ph., Chaudouet, P., Madar, R., Rouault, A, Senateur, J.P., and Fruchart, R., C.R. Acad. Sci. 299, 849 (1984).Google Scholar
6.Oesterreicher, K. and Oesterreicher, H., Phys. Status Solidi A 85, K61 (1984).CrossRefGoogle Scholar
7.Cech, R.E., U.S. Patent 3,625,779 (1971); J. Metals 26, 32 (1974).Google Scholar
8.Kornfeld, F., Goldschmidt Informiert 4/75, No. 35 (Th. Goldschmidt AG, Essen, FRG, 1975).Google Scholar
9.Herget, C., Metal Powder Rep. 41, 438 (1987).Google Scholar
10.Okajima, Y., Tsugita, T., Takechi, T., and Okada, S., U.S. Patent No. 4,681,623 (1987).Google Scholar
11.Qi, G.J., Hino, M., and Yazawa, A., Materials Transaction, JIM, 31, 463 (1990).CrossRefGoogle Scholar
12.Su, M.Z., Liu, S.F., Qian, X.L., and Lin, J.H., J. Alloys Compounds 249, 229 (1997).CrossRefGoogle Scholar
13.Liu, T.Y., Chang, W.C., Chen, C.J., Chu, T.Y., and Wu, C.D., IEEE Trans. Magn. 28, 2593 (1992).CrossRefGoogle Scholar
14.Lin, J.H., Liu, S.F., Qian, X.L., Bayi, J.M., and Su, M.Z., J. Alloys Compounds 238, 113 (1996).CrossRefGoogle Scholar
15.Cheng, Q.M., Lin, J.H., and Su, M.Z., Solid State Commun. 106, 455 (1998).CrossRefGoogle Scholar
16.Kramp, S., Feri, M., I’Héritier, Ph., Ezekwenna, P., and Joubert, J.C., J. Magn. Magn. Mater. 157/158, 73 (1996).CrossRefGoogle Scholar
17.Ram, S. and Joubert, J.C., Appl. Phys. Lett. 61, 613 (1992).CrossRefGoogle Scholar
18.Claude, E., Ram, S., Gimenez, I., Chaudo et, P., Boursier, D., and Joubert, J.C., IEEE Trans. Mag. 29, 2767 (1993).CrossRefGoogle Scholar
19.Lin, J.H., Liu, S.F., Cheng, Q.M., Qian, X.L., Yang, L.Q., and Su, M.Z., Alloys, J.Compounds. 249, 237 (1997).CrossRefGoogle Scholar
20.Sun, G.F., Chen, J.F., Dahl, W., Klaar, H.J., and Burchard, W.G., J. Appl. Phys. 64, 5519 (1988).CrossRefGoogle Scholar
21.Liu, T.Y., Chen, C.J., Lin, C.H., and Chang, W.C., J. Appl. Phys. 70, 6612 (1991).CrossRefGoogle Scholar
22.Chen, C.J., Liu, T.Y., Hung, Y.C., Lin, C.H., Chen, S.H., and Wu, C.D., J. Appl. Phys. 69, 5501 (1991).CrossRefGoogle Scholar
23.Kim, B.K., Choi, C.J., and Dong, X.L., US Patent No. (in filing)Google Scholar
24.Katta, S. and Gauvin, W.H., J.AIChE 21, 1 (1975).CrossRefGoogle Scholar
25.Reed, J.S., Introduction to the Principles of Ceramic Processing (John Wiley & Sons, New York, 1988), pp. 313326.Google Scholar
26.Lukasiewicz, S.J., J. Am. Ceram. Soc. 72, 617 (1989).CrossRefGoogle Scholar
27.Master, K., Spray Drying (Wiley Interscience, New York, 1976).Google Scholar