Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T19:14:58.914Z Has data issue: false hasContentIssue false

Wavelength-dependent Raman scattering of hydrogenated amorphous silicon carbon with red, green, and blue light excitation

Published online by Cambridge University Press:  06 January 2012

Minseo Park
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
V. Sakhrani
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
J-P. Maria
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
J. J. Cuomo
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
C. W. Teng
Affiliation:
Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695
J. F. Muth
Affiliation:
Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695
M. E. Ware
Affiliation:
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695
B. J. Rodriguez
Affiliation:
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695
R. J. Nemanich
Affiliation:
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695
Get access

Abstract

This study presents results of wavelength-dependent Raman scattering from amorphous silicon carbon (a-Si:C:H). The a-Si:C:H films were produced by radio-frequency plasma-enhanced chemical vapor deposition. Prior results with amorphous carbon indicate that laser excitation selectively probes clusters with differing sizes. Our measurements with a-Si:C:H indicate that when using red (632.8 nm), green (514.5 nm), and blue (488.0 nm) excitation, the Raman D and G peaks shift to higher wave numbers as the excitation energy increases. The higher frequency is associated with smaller clusters that are preferentially excited with higher photon energy. It appears that photoluminescence occurs due to radiative recombination from intracluster transitions in Si-alloyed sp2-bonded carbon clusters

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cardona, M., in Light Scattering in Solids II, edited by Cardona, M. and Guntherödt, G. (Springer-Verlag, Berlin, Germany, 1983), p. 19.CrossRefGoogle Scholar
Paula, A.M. de, Barbosa, L.C., Cruz, C.H.B., Alves, O.L., Sanjurjo, J.A., and Cesar, C.L., Appl. Phys. Lett. 69, 357 (1996).CrossRefGoogle Scholar
Tamor, M.A. and Vassell, W.C., J. Appl. Phys. 76, 3823 (1994).CrossRefGoogle Scholar
Wagner, J., Ramsteiner, M., Wild, Ch., and Koidl, P.. Phys. Rev. B 40, 1817 (1989).CrossRefGoogle Scholar
Ramsteiner, M. and Wagner, J., Appl. Phys. Lett. 51, 1355 (1987).CrossRefGoogle Scholar
Mulazzi, E., Brivio, G.P., Faulques, E., and Lefrant, S., Solid State Commun. 46, 851 (1983).CrossRefGoogle Scholar
Yoshikawa, M., Nagai, N., Matsuki, M., Fukuda, H., Katagiri, G., Ishida, H., and Ishitani, A., Phys. Rev. B 46, 7169 (1992).CrossRefGoogle Scholar
Tamor, M.A., Haire, J.A., Wu, C.H., and Hass, K.C., Appl. Phys. Lett. 54, 123 (1989).CrossRefGoogle Scholar
Nemanich, R.J. and Solin, S.A., Phys. Rev. B 20, 392 (1979).CrossRefGoogle Scholar
Tuinstra, F. and Koenig, J.L., J. Chem. Phys. 53, 1126 (1970).CrossRefGoogle Scholar
Prawer, S., Nugent, K.W., Lifshitz, Y., Lempert, G.D., Grossman, E., Kulik, J., Avigal, I., and Kalish, R., Diamond Relat. Mater. 5, 433, (1996).CrossRefGoogle Scholar
McCulloch, D.G., Prawer, S., and Hoffman, A., Phys. Rev. B 50, 5905 (1994).CrossRefGoogle Scholar
Dresselhaus, M.S. and Dresselhaus, G., in Light Scattering in Solids III, edited by Cardona, M. and Güntherodt, G. (Springer-Verlag, Berlin, 1982), p. 33.Google Scholar
Farrari, A.C. and Robertson, J., Phys. Rev. B 61, 14095 (2000).CrossRefGoogle Scholar
Kelires, P.C., Phys. Rev. Lett. 73, 2460 (1994).CrossRefGoogle Scholar
Bergman, L. and Nemanich, R.J., J. Appl. Phys. 78, 6709 (1995).CrossRefGoogle Scholar
Scamarcio, G., Lugará, M., and Manno, D., Phys. Rev. B 45, 13792 (1992).CrossRefGoogle Scholar
Zhang, X., Weber, W.H., Vassell, W.C., Potter, T.J., and Tamor, M.A., J. Appl. Phys. 83, 2820 (1998).CrossRefGoogle Scholar
Shi, J.R., Shi, X., Sun, Z., Liu, E., Yang, H.S., Cheah, L.K., and Jin, X.Z., J. Phys.: Condens. Matter 11, 5111 (1999).Google Scholar
Saito, R., Jorio, A., Filho, A.G. Souza, Dresselhaus, G., Dresselhaus, M.S., and Pimenta, M.A., Phys. Rev. Lett. 88, 027401 (2002).CrossRefGoogle Scholar
Thomsen, C. and Reich, S., Phys. Rev. Lett. 85, 5214 (2000).CrossRefGoogle Scholar
McCulloch, D.G., Prawer, S., and Hoffman, A., Phys. Rev. B 50, 5905 (1994).CrossRefGoogle Scholar
Elman, B.S., Shayegan, M., Dresselhaus, M.S., Mazurek, H., and Dresselhaus, G., Phys. Rev. B 25, 4142 (1982).CrossRefGoogle Scholar
Robertson, J. and E.P. O’Reilly, Phys. Rev. B 35, 2946 (1987).CrossRefGoogle Scholar
Rusli, , Robertson, J., and Amaratunga, G.A., J. Appl. Phys. 80, 2998 (1996).CrossRefGoogle Scholar