Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T03:49:58.088Z Has data issue: false hasContentIssue false

The first Upper Triassic silicified hypercalcified sponges from the Alexander Terrane, Gravina island and Keku Strait, Southeast Alaska

Published online by Cambridge University Press:  20 May 2016

Baba Senowbari-Daryan
Affiliation:
1Institut für Paláontologie, Loewenichstr. 28, D-91054 Erlangen, Germany,
Andrew H. Caruthers
Affiliation:
2The University of Montana Center for Paleontology, Missoula 59812,
George D. Stanley Jr.
Affiliation:
2The University of Montana Center for Paleontology, Missoula 59812,

Abstract

This paper describes the first silicified Upper Triassic (Early Norian) hypercalcified sponges known from the Alexander terrane, southeast Alaska. Sponges consist of five taxa from the Cornwallis Limestone of Keku Strait, southeast Alaska: Amblysiphonella Steinmann, Parauvanella Senowbari-Daryan and Di Stefano, Nevadathalamia cylindrica (Seilacher), N. minima n. sp., and Stellispongia (S. cf. subsphaerica Dieci, Antonacci, and Zardini). The hypercalcified sponges of the Alexander terrane as described in this paper provide paleogeographic linkage with other far-flung terranes of western North America, namely the Western Great Basin of Nevada, Stikinia of the Yukon, as well as the Antimonio terrane of northwestern Mexico. In addition, Parauvanella cf. ferdowensis is known from the Upper Triassic Nayband Formation, Iran. Finally Stellispongia cf. subsphaerica is known from the Upper Carnian Cassian Formation of the Dolomite Alps.

Sponges (particularly hypercalcified inozoans, sphinctozoans, chaetetids, and sponge-like organisms) are known worldwide from many Upper Triassic reef and nonreef sites. Although Upper Triassic deposits within the Cordilleran terranes and cratonal North America do not typically contain reeflike buildups, hypercalcifying sponge-like organisms were noted as occurring as part of the intricate paleoecological structure within a biostrome along the western shoreline of Gravina Island, southeast Alaska (southern Alexander terrane). This is in contrast to Keku Strait, southeast Alaska (central Alexander terrane), where hypercalcified sponges were identified from limestone beds within nonreef deposits.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aleotti, G., Dieci, G., and Russo, F. 1986. Esponges Permiaennes de la Vallee de Sosio (Sicilie). Révision systematique des sphinctozoaires. Annales de Paléontologie (Vert.-Invert.), 72(3):211246.Google Scholar
Bernecker, M. 1986. Upper Triassic reefs of the Oman Mountains: Data from the South Tethyan margin. Facies, 34:4176.Google Scholar
Bidder, G. P. 1898. The skeleton and classification of calcareous sponges. Proceedings of the Royal Society, London, 64:6176.Google Scholar
Boiko, E. V., Belyaeva, G. V., and Zhuravleva, I. T. 1991. Phanerozoic sphinctozoans from the Territory of USSR, Academy of Sciences of USSR, Siberian Department, Institute of Geology and Geophysics. Academy of Sciences of Tajikistan SSR, Institute of Geology, 223 p. (In Russian)Google Scholar
Bowerbank, J. S. 1864. A monograph of the British Spongidae, 1. Royal Society London, 290 p.Google Scholar
Caruthers, A. H. 2005. Upper Triassic carbonates and scleractinian corals from Wrangellia and the Alexander terrane (Alaska and Vancouver Island, Canada): Depositional environments and paleobiogeography. Unpublished M.S. thesis, University of Montana, Missoula, 211 p.Google Scholar
Caruthers, A. H. and Stanley, G. D. Jr.In press. Upper Triassic silicified shallow-water corals and other marine fossils from Wrangellia and the Alexander terrane, Alaska and Vancouver Island British Columbia. In Stanley, G. D. Jr. and Blodgett, R. B. (eds.), GSA Special Paper.Google Scholar
Coney, P. J., Jones, D. L., and Monger, J. W. H. 1980. Cordilleran suspect terranes. Nature, 288(27):321327.Google Scholar
De Laubenfels, M. W. 1955. Porifera, p. 21112. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. El, Archaeocyatha and Porifera. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Dieci, G., Antonacci, A., and Zardini, R. 1968. Le spugne cassiane (Trias medio-superiore) della regione dolomitica attorno a Cortina dAmpezzo. Bolletino della Società Paleontologica Italiana, 7(2):94155.Google Scholar
d'Orbigny, A. D. 1849. Note sur la classe des Amorphozoaires. Magazine de Zoologie pure et appliqué, series 2, no. 1:545550.Google Scholar
Finks, R. M. and Rigby, J. K. 2004. Hypercalcified sponges, p. 585764. In Kaesler, R. L. (ed.), Treatise on Invertebrate Paleontology, Pt. E, Porifera, (revised). Vol. 3. (Demospongia, Hexactinellida, Heteracinida, Calcarea). Geological Society of America and University of Kansas, Boulder, Colorado, and Lawrence, Kansas.Google Scholar
Flügel, E. 1981. Paleoecology and facies of Upper Triassic reefs in the northern calcareous Alps, p. 291359. In Toomey, D. F. (ed.), European Fossil Reef Models. Society of Economic Paleontologists and Mineralogists Special Publication 30.Google Scholar
Flügel, E. 2002. Triassic reef patterns, p. 391463. In Kiessling, W., Flügel, E., and Golonka, J. (eds.), Phanerozoic Reef Patterns. SEPM Special Publication 72.Google Scholar
Flügel, E. and Reinhardt, J. 1989. Uppermost Permian reefs in Skyros (Greece) and Sichuan (China): Implications for the Late Permian extinction event. Palaios, 4:502518.Google Scholar
Flügel, E. and Senowbari-Daryan, B. 2001. Triassic reefs of the Tethys, p. 217249. In Stanley, G. D. Jr. (ed.), The History and Sedimentology of Ancient Reef Systems. Kluwer Academic/Plenum Publishers, New York.Google Scholar
Frech, F. 1890. Die Korallenfauna der Trias.-I. Die Korallen der Juvavischen Triasprovinz. Palaeontographica, 37:1116.Google Scholar
Gardner, M. C., Bergman, S. C., Cushing, G. W., Mackevett, E. M. Jr., Plafker, G., Campbell, R. B., Dodds, J. C., Mcclelland, W. C., and Mueller, P. A. 1988. Pennsylvanian pluton stitching of Wrangellia and the Alexander Terrane, Wrangeil Mountains, Alaska. Geology, 16(11):967971.2.3.CO;2>CrossRefGoogle Scholar
Gehrels, G. E. and Saleeby, J. B. 1987. Geologic framework, tectonic evolution, and displacement history of the Alexander terrane. Tectonics, 6(2):151173.Google Scholar
Goldfuss, A. 1826. Petrefacta Germaniae. Abbildungen und Beschreibungen der Petrefacten Deutschlands und der angrenzenden Länder, Band 1, Heft 1:77164.Google Scholar
Goodwin, D. H. and Stanley, G. D. Jr. 1997. Norian sponge and coral biostromes in the Antimonio Formation, northwestern Sonora, Mexico. Revista Mexicana de Ciencias Geologicas, 14(2): 160166.Google Scholar
Haas, O. 1909. Bericht über die neue Aufsammlungen in den Zlambach-Mergeln der Fischerwiese bei Alt Aussee. Beiträge Paläeontologie Österreich-Ungarn, 22:143167.Google Scholar
Katvala, E. C. and Stanley, G. D. Jr.In press. Conodont Biostratigraphy and Facies Correlations in an Upper Triassic Island Arc, Keku Strait, Southeast Alaska. In Stanley, G. D. Jr. and Blodgett, R. B. (eds.), GSA Special Paper.Google Scholar
Kristan-Tollmann, E. and Tollmann, A. 1983. Tethys-faunen-elemente in der Trias der U.S.A. Mitteilungen der österreichischen geologischen Gesellschaft, 76:213272.Google Scholar
Lévi, C. 1953. Sur une nouvelle classification des Démosponges. Académie des Science (Paris), Comptes Rendus Séances, 236:853855.Google Scholar
Moissev, C. R. 1944. Vodoroslii, gubki, gidroidnye polipy i korally verkhnego triasa Kavkazskogo khrebtra [Algae, sponges, aqueous polyps and corals of the Upper Trias of the Caucasus]. Uchenye Zapiski Leningradskogo Gosaudarstvennogo Universiteta Seriya Geologo-Pochvenno-Geografischskaya [Scientific publications of the Leningrad State University], 11(70): 1528.Google Scholar
Münster, G. F. zu. 1841. Beiträge zur Geognosie und Petrefakten-Kunde des südöstlichen Tirols, vorzüglich der Schichten von St. Cassina. Bayreuth, 152 p.Google Scholar
Ott, E. 1967. Segmentierte Kalkschwämme (Sphinctozoa) aus der alpinen Mitteltrias und ihre Bedeutung als Riffbildner im Wettersteinkalk. Bayerische Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse, Abhandlungen (new serie), 131:196.Google Scholar
Pickett, J. 1982. Vaceletia progenitor, the first Tertiary sphinctozoan (Porifera). Alcheringa, 6:241247.Google Scholar
Rauff, H. 1938. Über einige Kalkschwämme aus der Trias der peruanischen Kordillere nebst einem Anhang über Stellispongia und ihre Arten. Paläontologische Zeitschrift, 20:178214.CrossRefGoogle Scholar
Reuss, A. E. 1865. Zwei neue Anthozoen aus den Hallstätter Schichten. Sitzungsbericht der Akademie und Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse, 61:115.Google Scholar
Rigby, J. K., Fan, J., and Zhang, W. 1989. Sphinctozoan sponges from the Permian reefs in South China. Journal of Paleontology, 63:404439.Google Scholar
Rigby, J. K., Senowbari-Daryan, B., and Liu, H. 1998. Sponges from Permian Upper Capitan Limestone, Guadalupe Mountains, New Mexico and Texas. Brigham Young University Geology Studies, 43:19117.Google Scholar
Röhl, U., Dumont, T., von Rad, U., Martini, R., and Zaninetti, L. 1991. Upper Triassic Tethyan carbonates of northwest Austrialia (Wombat Plateau, ODP Leg 122). Facies, 25:211252.CrossRefGoogle Scholar
Savage, N. M. 1988. Devonian faunas and major depositional events in the southern Alexander terrane, southeastern Alaska. Canadian Society of Petroleum Geologists Memoir, 14:257264.Google Scholar
Seilacher, A. 1962. Die Sphinctozoa, eine Gruppe fossiler Kalkschwämme. Abhandlungen der mathematisch-naturwissenschaftliche Klasse, Akademie Wissenschat und Literatur Mainz, 10:725790.Google Scholar
Senowbari-Daryan, B. 1980. Neue Kalkschwämme (Sphinctozoen) aus obertriadischen Riffkalken von Sizilien. Mitteilungen der Gesellschaft Geologie und Bergbaustudenten Österreich, 26:179203.Google Scholar
Senowbari-Daryan, B. 1990. Die systematische Stellung der thalamiden Schwämme und ihre Bedeutung in der Erdgeschichte. Münchner geowissenschaftliche Abhandlungen, A, 21:1328.Google Scholar
Senowbari-Daryan, B. 1994a. Segmentiere Schwämme (Sphinctozoen) aus der Obertrias (Nor) des Taurus-Gebirges (S-Turkei). Abhandlungen der geologische Bundesanstalt (Festschrift Erik Flügel), 50:415446.Google Scholar
Senowbari-Daryan, B. 1994b. Mesozoic sponges of the Pucará Group, Peru. Palaeontographica, Abteilung A, 233:5774.Google Scholar
Senowbari-Daryan, B. 1996. Upper Triassic reefs and reef communities of Iran, p. 299304. In Reitner, J., Neuweiler, F., and Gunkel, F. (eds.), Global and Regional Controls on Biogenic Sedimentation. Reef Evolution. Research Reports. Göttinger Arbeiten, Geolologie und Paläontologie, Sb2.Google Scholar
Senowbari-Daryan, B. 2005a. Hypercalcified sphinctozoan sponges from Upper Triassic (Norian-Rhaetian) reefs of Nayband Formation (Central and East Iran). Jahrbuch der geologischen Bundesanstalt Wien, 145(2): 171277.Google Scholar
Senowbari-Daryan, B. 2005b. Inozoide Schwämme aus obertriadischen (Nor-Rhät) Riffen der Nayband-Formation (NE und Zentraliran). Senckenbergiana Lethaea, 85(2):261299.CrossRefGoogle Scholar
Senowbari-Daryan, B. and Di Stefano, P. 1988. Microfacies and sphinctozoan assemblage of some Lower Permian breccias from the Lercdara Formation (Sicily). Rivista Italiana di Paleontologia e Stratigrafia, 94:334.Google Scholar
Senowbari-Daryan, B. and Garcia-Bellido, D. C. 2002. “Sphinctozoa” or chambered sponges (Polyphyletic), p. 15111538. In Hooper, J. N. A. and Van Soest, R. W. M. (eds.), Systema Porifera. Plenum Press, New York.Google Scholar
Senowbari-Daryan, B. and Hamedani, A. 1999. Thalamid sponges from the Upper Triassic (Norian-Rhaetian) Nayband Formation near Wali-Abad, SE Abadeh, Central Iran. Rivista Italiana di Paleontologia e Stratigrafia, 105(1):293322.Google Scholar
Senowbari-Daryan, B. and Reid, R. P. 1987. Upper Triassic sponges (Sphinctozoa) from southern Yukon, Stikinia terrane. Canadian Journal of Earth Sciences, 24:882902.Google Scholar
Senowbari-Daryan, B. and Schäfer, P. 1986. Sphinctozoen (Kalkschwämme) aus den norischen Riffen von Sizilien. Facies, 14:235284.Google Scholar
Senowbari-Daryan, B., Seyed-Emami, K., and Aghanabati, S. A. 1997. Some Inozoid sponges from Upper Triassic (Norian-Rhaetian) Nayband Formation of Central Iran. Rivista Italiana di Paleontologia e Stratigrafia, 103(3):293322.Google Scholar
Senowbari-Daryan, B. and Stanley, G. D. Jr. 1988. Triassic sponges (Sphinctozoa) from Hells Canyon, Oregon. Journal of Paleontology, 62: 419423.Google Scholar
Senowbari-Daryan, B. and Stanley, G. D. Jr. 1992. New thalamid sponges from the Triassic Luning Formation of Nevada. Journal of Paleontology, 66:183193.Google Scholar
Senowbari-Daryan, B., Stanley, G. D. Jr., and Gonzalez-Leon, C. 2001. A new Triassic sponge from the Antimonio terrane, Sonora, Mexico. Journal of South American Earth Sciences, 14:447452.Google Scholar
Smith, J. P. 1927. Upper Triassic marine Invertebrate Faunas of North America. U.S. Geological Survey Professional Paper 141, 262 p.Google Scholar
Soja, C. M. 1988. Lower Devonian platform carbonates from Kasaan Island, southeastern Alaska, Alexander terrane. Canadian Journal of Earth Sciences, 25:639656.Google Scholar
Soja, C. M. 1994. Significance of Silurian stromatolite-sphinctozoan reefs. Geology (Boulder), 22(4):355358.Google Scholar
Soja, C. M. 1996. Island-arc carbonates: Characterization and recognition in the ancient geologic record. Earth Science Reviews, 41:3165.Google Scholar
Sollas, W. J. 1875. Sponges, p. 427446. In Encyclopedia Britannica (ninth edition). Adam and Charles Black, Edinburgh.Google Scholar
Stanley, G. D. Jr., 1979. Paleoecology, structure and distribution of Triassic coral buildups in western North America. University of Kansas Paleontological Contribution, 65:158.Google Scholar
Stanley, G. D. Jr., 1988. The history of early Mesozoic reef communities: A three-step process. Palaios, 3:170183.Google Scholar
Stanley, G. D. Jr., 1993. Volcanic island reefs from circum-Pacific terranes. Canadian Society of Petroleum Geologists, Annual Meeting, Calgary, Alberta, Program and Abstracts, p. 298.Google Scholar
Stanley, G. D. Jr., 1996. Confessions of a displaced reefer. Palaios, 11(1): 12.Google Scholar
Stanley, G. D. Jr., 2001. Introduction to reef ecosystems and their evolution, p. 139. In Stanley, G. D. Jr. (ed.), The History and Sedimentology of Ancient Reef Systems. Kluwer Academic/Plenum, New York.Google Scholar
Stanley, G. D. Jr. and Senowbari-Daryan, B. 1999. Upper Triassic reef fauna from the Quesnel terrane, central British Columbia, Canada. Journal of Paleontology, 73(5):787802.Google Scholar
Stanley, G. D. Jr., Gonzalez-Leon, C., Sandy, M. R., Senowbari-Daryan, B., Doyle, B., Tamura, M., and Erwin, D. H. 1994. Upper Triassic invertebrates from the Antimonio Formation, Sonora, Mexico. Paleontological Society Memoir 36, 33 p.Google Scholar
Steinmann, G. 1882. Pharetronen-Studien. Neues Jahrbuch für Mineralogie, 2:139191.Google Scholar
Verrill, A. E. 1907. Porifera of the Bermuda Islands, New Haven, Connecticut, Transaction of the Academy of Arts and Sciences, 12:330344.Google Scholar
Vinassa De Regny, P. 1901. Trias-Spongien aus dem Bakony. Resultate der wissenschaftlichen Erforschung Balatonsee. 1, Paläontologie der Umgebung des Balatonsees, Vol. 1, 22 p., Wien.Google Scholar
Weidlich, O. and Senowbari-Daryan, B. 1996. Late Permian “spinctozoids” from reef blocks of the Ba'id area, Oman Mountains. Journal of Paleontology, 70:2746.Google Scholar
Wilckens, O. 1937. Beiträge zur Paläontologie des Ostindischen Archipels, XIV. Korallen und Kalkschwamme aus dem obertriadischen Pharetronenkalk von Seran (Molukken). Neues Jahrbuch für Mineralogie, Geologie und Paläontologie (Abt. B), 77:171211.Google Scholar
Zankl, H. 1969. Die Hohe Göll – Aufbau und Lebensbild eines Dachsteinkalk-Riffes in der Obertrias der nördlichen Kalkalpen. Abhandlungen der Senckenbergische Naturforschende Gesellschaft, 14:1123.Google Scholar
Zonneveld, J. P., Gingras, M. K., Orchard, M. J., Stanley, G. D. Jr., Blakney, B. J., and Henderson, C. M. 2002. Triassic reefs of the Canadian Rocky Mountain front ranges: Recovery of hard-bottom communities in the aftermath of the Permian-Triassic extinction. International Sedimentological Congress, Johannesburg, South Africa, Abstract Volume, p. 425.Google Scholar