Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T03:48:09.743Z Has data issue: false hasContentIssue false

Middle Cambrian arthropods from Utah

Published online by Cambridge University Press:  20 May 2016

Derek E. G. Briggs
Affiliation:
1Department of Geology and Geophysics, Yale University, P.O. Box 208109, New Haven, Connecticut 06520-8109,
Bruce S. Lieberman
Affiliation:
2Department of Geology, 1475 Jayhawk Boulevard, University of Kansas, 120 Lindley Hall, Lawrence, 66045-7613, ,
Jonathan R. Hendricks
Affiliation:
2Department of Geology, 1475 Jayhawk Boulevard, University of Kansas, 120 Lindley Hall, Lawrence, 66045-7613, ,
Susan L. Halgedahl
Affiliation:
3Department of Geology and Geophysics, University of Utah, 135 S. 1460 East, Salt Lake City, 84112, ,
Richard D. Jarrard
Affiliation:
3Department of Geology and Geophysics, University of Utah, 135 S. 1460 East, Salt Lake City, 84112, ,

Abstract

The Middle Cambrian Spence Shale Member (Langston Formation) and Wheeler and Marjum Formations of Utah are known to contain a diverse soft-bodied fauna, but important new paleontological material continues to be uncovered from these strata. New specimens of anomalocaridids include the largest and smallest near complete examples yet reported from Utah. New material of stem group arthropods includes two new genera and species of arachnomorphs: Nettapezoura basilika and Dicranocaris guntherorum. Other new arachnomorph material includes a new species of Leanchoilia comparable to L. protogonia Simonetta, 1970; Leanchoilia superlata? Walcott, 1912; Sidneyia Walcott, 1911a; and Mollisonia symmetrica Walcott, 1912. L. protogonia from the Burgess Shale is confirmed as a separate species and is not a composite fossil. The first example of the trilobite Elrathia kingii preserving traces of the appendages is described. In addition, new material of the bivalved arthropods Canadaspis Novozhilov in Orlov, 1960; Branchiocaris Briggs, 1976; Waptia Walcott, 1912; and Isoxys Walcott, 1890 is described.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, P. A. and Brett, C. E. 1995. In situ benthos and paleo-oxygenation in the middle Cambrian Burgess Shale, British Columbia, Canada. Geology, 23:10791082.2.3.CO;2>CrossRefGoogle Scholar
Allison, P. A. and Briggs, D. E. G. 1993. Exceptional fossil record: Distribution of soft-tissue preservation through the Phanerozoic. Geology, 21: 527530.Google Scholar
Babcock, L. E. and Robison, R. A. 1988. Taxonomy and paleobiology of some Middle Cambrian Scenella (Cnidaria) and hyolithids (Mollusca) from western North America. The University of Kansas Paleontological Contributions, 121:122.Google Scholar
Babcock, L. E., Zhang, W. T., and Leslie, S. A. 2001. The Chengjiang Biota: Record of the Early Cambrian diversification of life and clues to exceptional preservation. GSA Today, 11:48.Google Scholar
Boxshall, G. 1998. Comparative limb morphology in major crustacean groups: The coxa-basis joint in postmandibular limbs, p. 155168. In Fortey, R. A. and Thomas, R. H. (eds.), Arthropod Relationships. Chapman and Hall, London.CrossRefGoogle Scholar
Boxshall, G. A. 2004. The evolution of arthropod limbs. Biological Reviews, 79:253300.CrossRefGoogle ScholarPubMed
Briggs, D. E. G. 1976. The arthropod Branchiocaris n. gen., Middle Cambrian, Burgess shale, British Columbia. Geological Survey of Canada, Bulletin, 264:129.Google Scholar
Briggs, D. E. G. 1978. The morphology, mode of life, and affinities of Canadaspis perfecta (Crustacea: Phyllocarida), Middle Cambrian, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society of London Series B, 281:439487.Google Scholar
Briggs, D. E. G. 1979. Anomalocaris, the largest known Cambrian arthropod. Palaeontology, 22:631664.Google Scholar
Briggs, D. E. G. 1983. Affinities and early evolution of the Crustacea: The evidence of the Cambrian fossils, p. 122. In Schram, F. R. (ed.), Crustacean Issues, Volume 1, Crustacean Phylogeny. Balkema, Rotterdam, The Netherlands.Google Scholar
Briggs, D. E. G. 1992. Phylogenetic significance of the Burgess Shale crustacean Canadaspis. Acta Zoologica, 73:293300.Google Scholar
Briggs, D. E. G. 1994. Giant predators from the Cambrian of China. Science, 264:12831284.CrossRefGoogle ScholarPubMed
Briggs, D. E. G. and Collins, D. 1988. A Middle Cambrian chelicerate from Mount Stephen, British Columbia. Palaeontology, 31:779798.Google Scholar
Briggs, D. E. G. and Collins, D. 1999. The arthropod Alalcomenaeus cambricus Simonetta, from the Middle Cambrian Burgess Shale of British Columbia. Palaeontology, 42:953977.Google Scholar
Briggs, D. E. G. and Fortey, R. A. 1989. The early radiation and relationships of the major arthropod groups. Science, 246:241243.Google Scholar
Briggs, D. E. G. and Mount, J. D. 1982. The occurrence of the giant arthropod Anomalocaris in the Lower Cambrian of southern California, and the overall distribution of the genus. Journal of Paleontology, 56:11121118.Google Scholar
Briggs, D. E. G. and Robison, R. A. 1984. Exceptionally preserved non-trilobite arthropods and Anomalocaris from the Middle Cambrian of Utah. The University of Kansas Paleontological Contributions, 111:124.Google Scholar
Briggs, D. E. G., Erwin, D. H., and Collier, F. J. 1994. The Fossils of the Burgess Shale. Smithsonian Institution Press, Washington, D. C., 238 p.Google Scholar
Briggs, D. É. G., Lieberman, B. S., Halgedahl, S. L., and Jarrard, R. D. 2005. A new metazoan from the Middle Cambrian of Utah and the nature of the Vetulicolia. Palaeontology, 48:681686.Google Scholar
Brooks, H. K. and Caster, K. E. 1956. Pseudoarctolepis sharpi, n. gen., n. sp. (Phyllocarida), from the Wheeler Shale (Middle Cambrian) of Utah. Journal of Paleontology, 30:914.Google Scholar
Bruton, D. L. 1981. The arthropod Sidneyia inexpectans, Middle Cambrian, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society, 295:619656.Google Scholar
Bruton, D. L. and Whittington, H. B. 1983. Emeraldella and Leanchoilia, two arthropods from the Burgess Shale, Middle Cambrian, British Columbia. Philosophical Transactions of the Royal Society, 300:553585.Google Scholar
Budd, G. E. 1993. A Cambrian gilled lobopod from Greenland. Nature, 364: 709711.Google Scholar
Budd, G. E. 1996. The morphology of Opabinia regalis and the reconstruction of the arthropod stem-group. Lethaia, 29:114.CrossRefGoogle Scholar
Budd, G. E. 1998a. Stem group arthropods from the Lower Cambrian Sirius Passet fauna of North Greenland, p. 125138. In Fortey, R. A. and Thomas, R. H. (eds.), Arthropod Relationships. Chapman and Hall, London.Google Scholar
Budd, G. E. 1998b. Arthropod body-plan evolution in the Cambrian with an example from anomalocaridid muscle. Lethaia, 31:197210.Google Scholar
Budd, G. E. 2001. Tardigrades as ‘stem-group arthropods’: The evidence from the Cambrian fauna. Zoologisches Anzeiger, 240:265279.Google Scholar
Budd, G. E. 2002. A paleontological solution to the arthropod head problem. Nature, 417:271275.Google Scholar
Budd, G. E. and Jensen, S. 2000. A critical reappraisal of the fossil record of the bilaterian phyla. Biological Reviews, 75:253295.Google Scholar
Butterfield, N. J. 2002. Leanchoilia guts and the interpretation of three-dimensional structures in Burgess Shale-type fossils. Paleobiology, 28:155171.2.0.CO;2>CrossRefGoogle Scholar
Butterfield, N. J. 2003. Exceptional fossil preservation and the Cambrian Explosion. Journal of Integrative and Comparative Biology, 43:166177.Google Scholar
Butterfield, N. J. and Nicholas, C. J. 1996. Burgess Shale-type preservation of both non-mineralizing and ‘shelly’ Cambrian organisms from the Mackenzie Mountains, northwestern Canada. Journal of Paleontology, 70: 893899.Google Scholar
Caron, J.-B. 2004. Taphonomy and community analysis of the Middle Cambrian Greater Phyllopod Bed, Burgess Shale. Unpublished Ph.D. thesis, University of Toronto, 295 pp.Google Scholar
Chen, J.-Y. 2004. The Dawn of the Animal World. Publishing House of Jiangsu Science and Technology, Nanjing. 367 pp.Google Scholar
Chen, J.-Y., Ramsköld, L., and Zhou, G.-Q. 1994. Evidence for monophyly and arthropod affinity of Cambrian giant predators. Science, 264:13041308.Google Scholar
Chen, J.-Y., Zhou, G.-Q., Zhu, M.-Y., and Yeh, K.-Y. 1996. The Chengjiang Biota: A Unique Window of the Cambrian Explosion. National Museum of Taiwan, 222 p.Google Scholar
Collins, D. 1996. The “evolution” of Anomalocaris and its classification in the arthropod Class Dinocarida (nov.) and Order Radiodonta (nov.). Journal of Paleontology, 70:280293.Google Scholar
Conway Morris, S. 1985. Cambrian lagerstätten: Their distribution and significance. Philosophical Transactions of the Royal Society of London, Series B, 307:507582.Google Scholar
Conway Morris, S. 1989. The persistence of Burgess Shale-type faunas: Implications for the evolution of deep-water faunas. Transactions of the Royal Society of Edinburgh, 80:271283.Google Scholar
Conway Morris, S. 1993. The fossil record and the early evolution of the Metazoa. Nature, 361:219225.Google Scholar
Conway Morris, S. 2000. The Cambrian “explosion”: Slow-fuse or mega-tonnage? Proceedings of the National Academy of Sciences, USA, 97: 44264429.Google Scholar
Conway Morris, S., Whittington, H. B., Briggs, D. E. G., Hughes, C. P., and Bruton, D. L. 1982. Atlas of the Burgess Shale. Palaeontological Association. 31 pp., 24 plates.Google Scholar
Conway Morris, S. and Robison, R. A. 1982. The enigmatic medusoid Peytoia and a comparison of some Cambrian biotas. Journal of Paleontology, 56:116122.Google Scholar
Conway Morris, S. and Robison, R. A. 1986. Middle Cambrian priapulids and other soft-bodied fossils from Utah and Spain. The University of Kansas Paleontological Contributions, 117:122.Google Scholar
Conway Morris, S. and Robison, R. A. 1988. More soft-bodied animals and algae from the Middle Cambrian of Utah and British Columbia. The University of Kansas Paleontological Contributions, 122:148.Google Scholar
Cotton, T. J. and Braddy, S. J. 2004. The phylogeny of arachnomorph arthropods and the origin of the Chelicerata. Transactions of the Royal Society of Edinburgh: Earth Sciences, 94:169193.Google Scholar
Dewel, R. A. and Dewel, W. C. 1998. The place of tardigrades in arthropod evolution, p. 109123. In Fortey, R. A. and Thomas, R. H. (eds.), Arthropod Relationships. Chapman and Hall, London.Google Scholar
Dzik, J. and Lendzion, K. 1988. The oldest arthropods of the East European platform. Lethaia, 21:2938.Google Scholar
Edgecombe, G. D. 1998. Introduction: The role of extinct taxa in arthropod phylogeny, p. 17. In Edgecombe, G. D. (ed.), Arthropod Fossils and Phylogeny. Columbia University Press, New York.Google Scholar
Edgecombe, G. D. and Ramsköld, L. 1999. Relationships of Cambrian Arachnata and the systematic position of Trilobita. Journal of Paleontology, 73:263287.Google Scholar
Elrick, M. and Snider, A. C. 2002. Deep-water stratigraphic cyclicity and carbonate mud mound development in the Middle Cambrian Marjum Formation, House Range, USA. Sedimentology, 49:10211047.Google Scholar
Fortey, R. A., Briggs, D. E. G., and Wills, M. A. 1996. The Cambrian evolutionary ‘explosion’: decoupling cladogenesis from morphological disparity. Biological Journal of the Linnean Society, 57:1333.Google Scholar
Gaines, R. R. and Droser, M. L. 2003. Paleoecology of the familiar trilobite Elrathia kingii: an early exaerobic zone inhabitant. Geology, 31:941944.Google Scholar
Gaines, R. R. and Droser, M. L. 2005a. New approaches to understanding the mechanics of Burgess Shale-type deposits: From the micron scale to the global picture. The Sedimentary Record, 3:48.Google Scholar
Gaines, R. R. and Droser, M. L. 2005b. The paleoenvironmental context of Burgess Shale-type biotas in the three Utah Lagerstätten (USA). Acta Micropaleontologica Sinica, 22:4047.Google Scholar
Gaines, R. R., Kennedy, M. J., and Droser, M. L. 2005. A new hypothesis for organic preservation of Burgess Shale taxa in the middle Cambrian Wheeler Formation, House Range, Utah. Palaeoclimatology, Palaeogeography, Palaeoecology, 220:193205.CrossRefGoogle Scholar
Glaessner, M. F. 1979. Lower Cambrian Crustacea and annelid worms from Kangaroo Island, South Australia. Alcheringa, 3:2131.Google Scholar
Gould, S. J. 1989. Wonderful Life. W. W. Norton, New York, 347 p.Google Scholar
Gould, S. J. 1991. The disparity of the Burgess Shale arthropod fauna and the limits of cladistic analysis: Why we must strive to quantify morphospace. Paleobiology, 17:411423.CrossRefGoogle Scholar
Gunther, L. F. and Gunther, V. G. 1981. Some Middle Cambrian fossils of Utah. Brigham Young University Geology Studies, 28:181.Google Scholar
Hagadorn, J. W. 2002. Burgess Shale-type localities: the global picture, p. 91116. In Bottjer, D. J., Etter, W., Hagadorn, J. W., and Tang, C. M. (eds.), Exceptional Fossil Preservation. Columbia University Press, New York.Google Scholar
Hintze, L. F. and Robison, R. A. 1975. Middle Cambrian stratigraphy of the House, Wah Wah, and adjacent ranges in western Utah. Geological Society of America Bulletin, 86:881891.Google Scholar
Hou, X.-G. 1987. Early Cambrian large bivalved arthropods from Chengjiang, eastern Yunnan. Acta Palaeontologica Sinica, 26:286298.Google Scholar
Hou, X.-G. and Bergström, J. 1991. The arthropods of the Lower Cambrian Chengjiang fauna, with relationships and evolutionary significance. p. 179187in Simonetta, A. and Conway Morris, S. (eds.), The Early Evolution of Metazoa and the Significance of Problematic Taxa. Cambridge University Press, Cambridge, UK.Google Scholar
Hou, X.-G. and Bergström, J. 1997. Arthropods of the Lower Cambrian Chengjiang fauna, southwest China. Fossils and Strata, 45:1116.Google Scholar
Hou, X.-G., Aldridge, R. J., Bergström, J., Siveter, D. J., Siveter, D. J., and Feng, X.-H. 2004. The Cambrian Fossils of Chengjiang, China. Blackwell Publishing, Oxford, U.K., 233 p.Google Scholar
Hou, X.-G., Bergström, J., and Ahlberg, P. 1995. Anomalocaris and other large animals in the Lower Cambrian Chengjiang fauna of southwest China. Geologiska Föreningens i Stockholm Forhandlingar, 117:163183.Google Scholar
Hou, X.-G., Bergström, J., and Yang, J. 2006. Distinguishing anomalocaridids from arthropods and priapulids. Geological Journal, 41:259269.Google Scholar
Hou, X.-G., Ramsköld, L., and Bergström, J. 1991. Composition and preservation of the Chengjiang Lower Cambrian soft-bodied biota. Zoologica Scripta, 20:395411.Google Scholar
Hou, S. 2005. Taphonomy and paleoecology of the Early Cambrian Chengjiang Biota from Eastern Yunnan, China. Berliner Paläobiologische Abhandlungen 7, 189 p.Google Scholar
Jell, P. A. and Adrain, J. M. 2003. Available generic names for trilobites. Memoirs of the Queensland Museum, 331-553.Google Scholar
Li, Y.-W. 1975. On the Cambrian Ostracoda with new materials from Sichuan, Yunnan and southern Shaanxi, China. Professional Papers of Stratigraphy and Palaeontology, 2:3772.Google Scholar
Liddell, W. D., Wright, S. H., and Brett, C. E. 1997. Sequence stratigraphy and paleoecology of the Middle Cambrian Spence Shale in northern Utah and southern Idaho. BYU Geology Studies, 42:5978.Google Scholar
Lieberman, B. S. 2003. A new soft-bodied fauna: The Pioche Formation of Nevada. Journal of Paleontology, 77:676692.Google Scholar
Luo, H.-L., Jiang, Z.-W., Wu, X.-C., Song, X.-L., and Ouyang, L. 1982. The Sinian-Cambrian boundary in eastern Yunnan, China. People's Publishing House of Yunnan, China, 265 p.Google Scholar
McHenry, B. and Yates, A. 1993. First report of the enigmatic metazoan Anomalocaris from the southern hemisphere and a trilobite with preserved appendages from the Early Cambrian of Kangaroo Island, South Australia. Records of the South Australian Museum, 26:7786.Google Scholar
Meek, F. B. 1870. Descriptions of fossils collected by the U.S. Geological Survey, under charge of Clarence King. Proceedings of the Academy of Natural Sciences of Philadelphia, 2nd series, 14:5664.Google Scholar
Moore, R. C. 1959. Treatise on Invertebrate Paleontology, Pt. O, Arthropoda 1. University of Kansas Press and the Geological Society of America, Lawrence, KS and Boulder, CO, 560 p.Google Scholar
Nedin, C. 1995. The Emu Bay Shale, a Lower Cambrian fossil lagerstätte, Kangaroo Island, South Australia. Memoirs of the Association of Australasian Palaeontologists, 18:3140.Google Scholar
Novozhilov, N. I. 1960. Podklass Pseudocrustacea, p. 199. In Orlov, Y. A. (ed.), Osnovy Paleontologii, Arthropoda, Trilobitomorpha, and Crustacea. Nedra, Moscow.Google Scholar
Orr, P. J., Briggs, D. E. G., and Kearns, S. L. 1998. Cambrian Burgess Shale animals replicated in clay minerals. Science, 281:11731175.Google Scholar
Raymond, P. E. 1935. Leanchoilia and other Mid-Cambrian Arthropoda. Bulletin of the Museum of Comparative Zoology, Harvard University, 76:205230.Google Scholar
Rees, M. N. 1986. A fault-controlled trough through a carbonate platform: The Middle Cambrian House Range embayment. Geological Society of America Bulletin, 97:10541069.Google Scholar
Resser, C. E. 1929. New Lower and Middle Cambrian Crustacea. Proceedings of the United States National Museum, 76:118.Google Scholar
Resser, C. E. 1939. The Spence Shale and its fauna. Smithsonian Miscellaneous Collections, 97:129.Google Scholar
Resser, C. E. and Howell, B. F. 1938. Lower Cambrian Olenellus zone of the Appalachians. Bulletin of the Geological Society of America, 49:195248.Google Scholar
Robison, R. A. 1985. Affinities of Aysheaia (Onychophora), with descriptions of a new Cambrian species. Journal of Paleontology, 59:226235.Google Scholar
Robison, R. A. 1991. Middle Cambrian biotic diversity: Examples from four Utah lagerstätten, p. 7798. In Simonetta, A. and Conway Morris, S. (eds.), The Early Evolution of Metazoa and the Significance of Problematic Taxa. Cambridge University Press, Cambridge, U.K.Google Scholar
Robison, R. A. and Richards, B. C. 1981. Large bivalve arthropods from the Middle Cambrian of Utah. The University of Kansas Paleontological Contributions, 106:128.Google Scholar
Robison, R. A. and Wiley, E. O. 1995. A new arthropod, Meristosoma: More fallout from the Cambrian explosion. Journal of Paleontology, 69: 447459.Google Scholar
Rogers, J. C. 1984. Depositional environments and paleoecology of two quarry sites in the Middle Cambrian Marjum and Wheeler formations, House Range, Utah. Brigham Young University Geology Studies, 31:97115.Google Scholar
Shu, D., Zhang, X., and Geyer, G. 1995. Anatomy and systematic affinities of the Lower Cambrian bivalved arthropod Isoxys auritus. Alcheringa, 19: 333342.Google Scholar
Simonetta, A. M. 1970. Studies on non-trilobite arthropods from the Burgess Shale (Middle Cambrian). Palaeontographica Italica, 66:3545.Google Scholar
Simonetta, A. M. and Delle Cave, L. 1975. The Cambrian non trilobite arthropods from the Burgess Shale of British Columbia. A study of their comparative morphology, taxonomy and evolutionary significance. Palaeontographica Italica, 69:137.Google Scholar
Størmer, L. 1942. Studies on trilobite morphology, Pt. II, The larval development, the segmentation, and the sutures, and their bearing on trilobite classification. Norsk Geologisk Tidsskrift, 21:49164.Google Scholar
Størmer, L. 1944. On the relationship and phylogeny of fossil and recent Arachnomorpha. A comparative study on Arachnida, Xiphosura, Eurypterida, Trilobita, and other fossil Arthropoda. Norske Videnskaps-Akademi i Oslo, Skrifter no. 5, 158 p.Google Scholar
Sumrall, C. D. and Sprinkle, J. 1999. Ponticulocarpus, a new cornutedgrade stylophoran from the Middle Cambrian Spence Shale of Utah. Journal of Paleontology, 73:886891.Google Scholar
Vannier, J. and Chen, J.-Y. 2000. The Early Cambrian colonization of pelagic niches exemplified by Isoxys (Arthropoda). Lethaia, 33:295311.Google Scholar
Walcott, C. D. 1890. The fauna of the Lower Cambrian or Olenellus Zone. U.S. Geological Survey, 10th Annual Report: 509763.Google Scholar
Walcott, C. D. 1908. Cambrian geology and paleontology I. Nomenclature of some Cambrian Cordilleran formations. Smithsonian Miscellaneous Collections, 53:112.Google Scholar
Walcott, C. D. 1911a. Middle Cambrian Merostomata. Cambrian geology and paleontology II. Nomenclature of some Cambrian Cordilleran formations. Smithsonian Miscellaneous Collections, 57:1740.Google Scholar
Walcott, C. D. 1911b. Middle Cambrian Holothurians and Medusae. Cambrian geology and paleontology II. Smithsonian Miscellaneous Collections, 57:4168.Google Scholar
Walcott, C. D. 1912. Middle Cambrian Branchiopoda, Malacostraca, Trilobita, and Merostomata. Cambrian geology and paleontology II. Smithsonian Miscellaneous Collections, 57:145228.Google Scholar
Walcott, C. D. 1924. Cambrian and Lower Ozarkian trilobites. Cambrian geology and paleontology V. Smithsonian Miscellaneous Collections, 75: 5360.Google Scholar
Walcott, C. D. 1931. Addenda to descriptions of Burgess Shale fossils. Smithsonian Miscellaneous Collections, 85:146.Google Scholar
Walossek, D. and Müller, K. J. 1998. Early arthropod phylogeny in light of the Cambrian “Orsten” fossils, p. 185231. In Edgecombe, G. D. (ed.), Arthropod Fossils and Phylogeny. Columbia University Press, New York.Google Scholar
Whiteaves, J. F. 1892. Description of a new genus and species of phyllocarid crustacea from the Middle Cambrian of Mount Stephen, B. C. Canadian Record of Science, 5:205208.Google Scholar
Whittington, H. B. 1975. The enigmatic animal Opabinia regalis, Middle Cambrian, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society of London Series B, 271:143.Google Scholar
Whittington, H. B. 1981. Rare arthropods from the Burgess Shale, Middle Cambrian, British Columbia. Philosophical Transactions of the Royal Society of London Series B, 292:329357.Google Scholar
Whittington, H. B. 1985. The Burgess Shale. Yale University Press, New Haven, Connecticut, 151 p.Google Scholar
Whittington, H. B. and Almond, J. E. 1987. Appendages and habits of the Upper Ordovician trilobite Triarthrus eatoni. Philosophical Transactions of the Royal Society of London Series B, 317:146.Google Scholar
Whittington, H. B. and Briggs, D. E. G. 1985. The largest Cambrian animal, Anomalocaris, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society of London Series B, 309:569609.Google Scholar
Williams, M., Siveter, D. J., and Peel, J. 1996. Isoxys (Arthropoda) from the early Cambrian Sirius Passet lagerstätte, north Greenland. Journal of Paleontology, 70:947954.Google Scholar
Wills, M. A., Briggs, D. E. G., Fortey, R. A., Wilkinson, M., and Sneath, P. H. A. 1998. An arthropod phylogeny based on fossil and recent taxa, p. 33105. In Edgecombe, G. D. (ed.), Arthropod Fossils and Phylogeny. Columbia University Press, New York.Google Scholar
Yuan, J.-L. and Huang, Y.-Z. 1994. Preliminary report on non-trilobite arthropods from Lower-Middle Cambrian Kaili Formation of Southwest Guizhou, South China. Acta Palaeontologica Sinica, 33(3):329334. (In Chinese with English Summary.)Google Scholar
Zhang, X.-L., Jian, H., and Shu, D. 2002. New occurrence of the Burgess Shale arthropod Sidneyia in the Early Cambrian Chengjiang Lagerstätte (South China), and revision of the arthropod Urokodia. Alcheringa, 26: 18.Google Scholar
Zhang, X.-L., Zhao, Y., Yang, R., and Shu, D. 2002. The Burgess Shale arthropod Mollisonia (M. sinica new species): New occurrence from the Middle Cambrian Kaili fauna of southwest China. Journal of Paleontology, 76:11061108.Google Scholar
Zhao, Y.-L., Yuan, J.-L., Zhu, M.-Y., Babcock, L. E., Peng, J., Wang, Y., Yang, S.-L., Guo, Q.-J., Yang, R.-D., and Tai, T.-S., 2005. Balang section, Guizhou, China: Stratotype section for the Taijiangian Stage and candidate for GSSP of an unnamed Cambrian Series. p. 6283. In Peng, S.-C., Babcock, L. E., and Zhu, M.-Y. (eds.), Cambrian System of China and Korea, Guide to Field Excursions, IV International Symposium on the Cambrian System and X Field Conference of the Cambrian Stage Subdivision Working Group. University of Science and Technology of China Press.Google Scholar
Zhao, Y.-L., Yuan, J.-L., Zhu, M.-Y., Yang, R.-G., Guo, Q.-J., Qian, Y., Huang, Y.-Z., and Pan, Y. 1999. A progress report on the early Middle Cambrian Kaili Biota, Guizhou, P.R.C. Acta Palaeontologica Sinica, 38 (supplement):115. (In Chinese with English Summary.)Google Scholar