Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T23:12:02.215Z Has data issue: false hasContentIssue false

CELLULAR CATEGORIES AND STABLE INDEPENDENCE

Published online by Cambridge University Press:  18 May 2022

MICHAEL LIEBERMAN*
Affiliation:
INSTITUTE OF MATHEMATICS, FACULTY OF MECHANICAL ENGINEERING BRNO UNIVERSITY OF TECHNOLOGY BRNO, CZECH REPUBLIC URL: https://math.fme.vutbr.cz/Home/lieberman
JIŘÍ ROSICKÝ
Affiliation:
DEPARTMENT OF MATHEMATICS AND STATISTICS FACULTY OF SCIENCE MASARYK UNIVERSITY BRNO, CZECH REPUBLIC E-mail: rosicky@math.muni.cz URL: http://www.math.muni.cz/~rosicky/

Abstract

We exhibit a bridge between the theory of cellular categories, used in algebraic topology and homological algebra, and the model-theoretic notion of stable independence. Roughly speaking, we show that the combinatorial cellular categories (those where, in a precise sense, the cellular morphisms are generated by a set) are exactly those that give rise to stable independence notions. We give two applications: on the one hand, we show that the abstract elementary classes of roots of Ext studied by Baldwin–Eklof–Trlifaj are stable and tame. On the other hand, we give a simpler proof (in a special case) that combinatorial categories are closed under 2-limits, a theorem of Makkai and Rosický.

Type
Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adámek, J., Herrlich, H., and Strecker, G. E., Abstract and concrete categories, online edition, 2004, available from http://katmat.math.uni-bremen.de/acc/.Google Scholar
Adámek, J. and Rosický, J., Locally Presentable and Accessible Categories , London Mathematical Society Lecture Notes, Cambridge University Press, Cambridge, 1994.CrossRefGoogle Scholar
Baldwin, J. T., Categoricity , University Lecture Series, vol. 50, American Mathematical Society, Providence, RI, 2009.Google Scholar
Baldwin, J. T., Eklof, P. C., and Trlifaj, J., N as an abstract elementary class . Annals of Pure and Applied Logic , vol. 149 (2007), pp. 2539.CrossRefGoogle Scholar
Barr, M., On categories with effective unions , Categorical Algebra and Its Applications (Borceux, F., editor), Lecture Notes in Mathematics, vol. 1348, Springer, Berlin, 1988, pp. 1935.CrossRefGoogle Scholar
Beke, T., Sheafifiable homotopy model category . Mathematical Proceedings of the Cambridge Philosophical Society , vol. 129 (2000), pp. 447475.CrossRefGoogle Scholar
Beke, T. and Rosický, J., Abstract elementary classes and accessible categories . Annals of Pure and Applied Logic , vol. 163 (2012), pp. 20082017.CrossRefGoogle Scholar
Bican, L., El Bashir, R., and Enochs, E. E., All modules have flat covers . Bulletin of the London Mathematical Society , vol. 33 (2001), pp. 385390.CrossRefGoogle Scholar
Boney, W., Grossberg, R., Kolesnikov, A., and Vasey, S., Canonical forking in AECs . Annals of Pure and Applied Logic , vol. 167 (2016), no. 7, pp. 590613.CrossRefGoogle Scholar
Borceux, F. and Rosický, J., Purity in algebra . Algebra Universalis , vol. 56 (2007), pp. 1735.CrossRefGoogle Scholar
Eklof, P. C. and Trlifaj, J., Covers induced by Ext . Journal of Algebra , vol. 231 (2000), pp. 640651.CrossRefGoogle Scholar
Enochs, E. E. and Jenda, O. M. G., Relative Homological Algebra , De Gruyter Expositions in Mathematics, vol. 30, De Gruyter, Berlin, 2000.CrossRefGoogle Scholar
Henry, S., Minimal model structures, preprint, 2020, arXiv:2011.13408.Google Scholar
Hess, K., Kȩdziorek, M., Riehl, E., and Shipley, B., A necessary and sufficient condition for induced model structures . Journal of Topology , vol. 10 (2017), pp. 324369.CrossRefGoogle Scholar
Lieberman, M., Positselski, L., Rosický, J., and Vasey, S., Cofibrant generation of pure monomorphisms . Journal of Algebra , vol. 560 (2020), pp. 12971310.CrossRefGoogle Scholar
Lieberman, M. J., Rosický, J., and Vasey, S., Forking independence from the categorical point of view . Advances in Mathematics , vol. 346 (2019), pp. 719772.CrossRefGoogle Scholar
Lieberman, M. J., Rosický, J., and Vasey, S., Sizes and filtrations in accessible categories . Israel Journal of Mathematics , vol. 238 (2020), no. 1, pp. 243278.CrossRefGoogle Scholar
Makkai, M., A survey of basic stability theory, with particular emphasis on orthogonality and regular types . Israel Journal of Mathematics , vol. 49 (1984), no. 1, pp. 181238.CrossRefGoogle Scholar
Makkai, M. and Rosický, J., Cellular categories . Journal of Pure and Applied Algebra , vol. 218 (2014), no. 9, pp. 16521664.CrossRefGoogle Scholar
Makkai, M., Rosický, J., and Vokřínek, L., On a fat small object argument . Advances in Mathematics , vol. 254 (2014), pp. 4968.CrossRefGoogle Scholar
Ringel, C. M., The intersection property of amalgamations . Journal of Pure and Applied Algebra , vol. 2 (1972), pp. 341342.CrossRefGoogle Scholar
Rosický, J., Accessible categories, saturation and categoricity, this Journal, vol. 62 (1997), no. 3, pp. 891–901.Google Scholar
Rosický, J., Flat covers and factorizations . Journal of Algebra , vol. 253 (2002), pp. 113.CrossRefGoogle Scholar
Shelah, S., Classification Theory and the Number of Non-Isomorphic Models , first ed., Studies in Logic and the Foundations of Mathematics, vol. 92, North-Holland, Amsterdam, 1978.Google Scholar
Shelah, S., Classification of non elementary classes II. Abstract elementary classes , Classification Theory (Chicago, IL, 1985) (Baldwin, J. T., editor), Lecture Notes in Mathematics, vol. 1292, Springer, Berlin, 1987, pp. 419497.CrossRefGoogle Scholar
Shelah, S., Classification Theory for Abstract Elementary Classes , Studies in Logic: Mathematical Logic and Foundations, vol. 18, College Publications, Rickmansworth, UK, 2009.Google Scholar
Vasey, S., Accessible categories, set theory, and model theory: An invitation, preprint, 2020, arXiv:1904.11307.Google Scholar