Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T12:58:07.263Z Has data issue: false hasContentIssue false

Indécidabilité de corps de séries formelles

Published online by Cambridge University Press:  12 March 2014

Françoise Delon
Affiliation:
Équipe De Logique Mathématique, Université Paris-VII Et C.N.R.S. 75251 Paris, France
Yamina Rouani
Affiliation:
Équipe De Logique Mathématique, Université Paris-VII Et C.N.R.S. 75251 Paris, France

Abstract

Consider k((G)) in the language of valued fields enriched with a unary predicate for the set of constants and another one for the cross-section. For perfect k, this structure is undecidable if it does not satisfy Kaplansky's conditions.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

[B] Bauval, A., Polynomial rings and weak second-order logic, this Journal, vol. 50 (1985), pp. 953972.Google Scholar
[BeDL] Becker, J., Denef, J., and Lipshitz, L., Further remarks on the elementary theory of-formal power series rings, Model theory of algebra and arithmetic (proceedings, Karpacz, 1979), Lecture Notes in Mathematics, vol. 834, Springer-Verlag, Berlin, 1980, pp. 19.Google Scholar
[C] Cherlin, G., Undecidability of rational function fields in nonzero characteristic, Logic Colloquium '82 (Lolli, G. et al., editors), North-Holland, Amsterdam, 1984, pp. 8595.CrossRefGoogle Scholar
[De] Delon, F., Quelques propriétés des corps tablés en théorie des modèles, Thèse de doctorat d'état, Université Paris-VII, Paris, 1982.Google Scholar
[K] Kuhlmann, F. V., Dissertation (en préparation).Google Scholar
[P] Pop, F., Dissertation (en préparation).Google Scholar
[R] Rouani, Y., Indécidabilité dans un langage enrichi de corps de séries formelles en caractéristique positive, Thèse de troisième cycle, Université Paris-VII, Paris, 1986.Google Scholar