Article contents
Laver indestructibility and the class of compact cardinals
Published online by Cambridge University Press: 12 March 2014
Abstract
Using an idea developed in joint work with Shelah, we show how to redefine Laver's notion of forcing making a supercompact cardinal κ indestructible under κ-directed closed forcing to give a new proof of the Kimchi-Magidor Theorem in which every compact cardinal in the universe (supercompact or strongly compact) satisfies certain indestructibility properties. Specifically, we show that if K is the class of supercompact cardinals in the ground model, then it is possible to force and construct a generic extension in which the only strongly compact cardinals are the elements of K or their measurable limit points, every κ ∈ K is a supercompact cardinal indestructible under ∈-directed closed forcing, and every κ a measurable limit point of K is a strongly compact cardinal indestructible under κ-directed closed forcing not changing ℘(κ). We then derive as a corollary a model for the existence of a strongly compact cardinal κ which is not κ+ supercompact but which is indestructible under κ-directed closed forcing not changing ℘(κ) and remains non-κ+ supercompact after such a forcing has been done.
- Type
- Research Article
- Information
- Copyright
- Copyright © Association for Symbolic Logic 1998
References
REFERENCES
- 16
- Cited by