Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T21:44:11.813Z Has data issue: false hasContentIssue false

Class number formulae in the form of a product of determinants in function fields

Published online by Cambridge University Press:  09 April 2009

Jaehyun Ahn
Affiliation:
Department of MathematicsKAIST Daejon 305-701Korea e-mail: jaehyun@math.kaist.ac.kryoung@math.kaist.ac.kr
Soyoung Choi
Affiliation:
Department of MathematicsKAIST Daejon 305-701Korea e-mail: jaehyun@math.kaist.ac.kryoung@math.kaist.ac.kr
Hwanyup Jung
Affiliation:
Department of Mathematics EducationChungbuk National UniversityCheongju Chungbuk 361-763Korea e-mail: hyjung@chungbuk.ac.kr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we generalize the Kučera's group-determinant formulae to obtain the real and relative class number formulae of any subfield of cyclotomic function fields with arbitrary conductor in the form of a product of determinants. From these formulae, we generalize the relative class number formula of Rosen and Bae-Kang and obtain analogous results of Tsumura and Hirabayashi for an intermediate field in the tower of cyclotomic function fields with prime power conductor.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2005

References

[1]Bae, S., Jung, H. and Ahn, J., ‘Determinant formulas for class numbers in function fields’, Math. Comp. 74 (2005), 935965.Google Scholar
[2]Bae, S. and Kang, P.-L., ‘Class numbers of cyclotomic function fields’, Acta Arith. 102 (2002), 251259.CrossRefGoogle Scholar
[3]Hayes, D. R., ‘Explicit class field theory for rational function fields’, Trans. Amer. Math. Soc. 189 (1974), 7791.CrossRefGoogle Scholar
[4]Hirabayashi, M., ‘A generalization of Maillet and Demyanenko determinants for the cyclotomic Zp-extension’, Abh. Math. Sem. Univ. Hamburg 71 (2001), 1527.CrossRefGoogle Scholar
[5]Jung, H. and Ahn, J., ‘Demjanenko matrix and recursion formula for relative class number over function fields’, J. Number Theory 98 (2003), 5566.CrossRefGoogle Scholar
[6]Kučera, R., ‘Formulae for the relative class number of an imaginary abelian field in the form of a product of determinants’, Acta Math. Inform. Univ. Ostraviensis 10 (2002), 7983.Google Scholar
[7]Nathanson, M. B., Elementary methods in number theory, Graduate Texts in Mathematics 195 (Springer, New York, 2000).Google Scholar
[8]Rosen, M., ‘A note on the relative class number in function fields’, Proc. Amer. Math. Soc. 125 (1997), 12991303.CrossRefGoogle Scholar
[9]Rosen, M., Number theory in function fields, Graduate Texts in Mathematics 210 (Springer, New York, 2002).Google Scholar
[10]Tsumura, H., ‘A note on the Demjanenko matrices related to the cyclotomic Zp–extension’, Proc. Japan Acad. Ser. A Math. Sci. 76 (2000), 99103.CrossRefGoogle Scholar