No CrossRef data available.
Article contents
Extrema of random algebraic polynomials with non-identically distributed normal coefficients
Published online by Cambridge University Press: 09 April 2009
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
An asymptotic estimate is derived for the expected number of extrema of a polynomial whose independent normal coefficients possess non-equal non-zero mean values. A result is presented that generalizes in terms of normal processes the analytical device used for construction of similar asymptotic estimates for random polynomials with normal coefficients.
Keywords
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 2001
References
[1]Belayev, Yu. K., ‘Continuity and Hölder's conditions for sample functions of stationary Gaussian processes’, Proc. 4th Berkeley Sympos. on Math. Statist. and Prob. II (Univ. California Press, Berkeley, 1961), 23–33.Google Scholar
[2]Bharucha-Reid, A. T. and Sambandham, M., Random polynomials (Academic Press, New York, 1986).Google Scholar
[3]Cramér, H. and Leadbetter, M. R., Stationary and related stochastic processes (Wiley, New York, 1967).Google Scholar
[4]Das, M., ‘The average number of maxima of a random algebraic curve’, Proc. Cambridge Philos. Soc. 65 (1969), 741–753.Google Scholar
[5]Edelman, A. and Kostlan, E., ‘How many zeros of a random polynomial are real?’, Bull. Amer. Math. Soc. 32 (1995), 1–37.CrossRefGoogle Scholar
[7]Farahmand, K. and Grigorash, A., ‘Level crossings of random algebraic polynomials with non-identically distributed normal coefficients’, Int. J. Appl. Math. 2 (2000), 213–221.Google Scholar
[8]Farahmand, K. and Hannigan, P., ‘The expected number of local maxima of a random algebraic polynomial’, J. Theoret. Probab. 10 (1997), 991–1002.CrossRefGoogle Scholar
[9]Leadbetter, M. R., ‘On crossings of levels and curves by a wide class of stochastic processes’, Ann. Math. Statist. 37 (1966), 260–267.CrossRefGoogle Scholar
[10]Marcus, M. B., ‘Level crossings of a stochastic process with absolutely continuous sample paths’, Ann. Probab. 5 (1977), 52–71.CrossRefGoogle Scholar
[11]Michna, Z. and Rychlik, I., ‘The expected number of level crossings for certain symmetric α-stable processes’, Comm. Statist. Stochastic Models 11 (1995), 1–19.Google Scholar
[12]Sambandham, M., ‘On random trigonometric polynomial’, Indian J. Pure Appl. Math. 7 (1976), 841–849.Google Scholar
[13]Wilkins, J. E., ‘An asymptotic expansion for the expected number of real zeros of a random polynomial’, Proc. Amer. Math. Soc. 103 (1988), 1249–1258.Google Scholar
You have
Access