Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T14:51:23.278Z Has data issue: false hasContentIssue false

Groups with Černikov conjugacy classes

Published online by Cambridge University Press:  09 April 2009

S. Franciosi
Affiliation:
Istituto di Matematica Facoltà di Scienze Università di Salerno84100 Salerno, Italy
F. De Giovanni
Affiliation:
Dipartimento di Matematica Università di NapoliVia Mezzocannone 880134 Napoli, Italy
M. J. Tomkinson
Affiliation:
Mathematics Department University of Glasgow University GardensG12 8QW Glasgow, Great Britain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The aim of this paper is to prove some embedding theorems for groups with Černikov conjugacy classes. Moreover a characterization of periodic central-by-Černikov groups is given.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1991

References

[1]Franciosi, S., de Giovanni, F. and Tomkinson, M. J., ‘Groups with polycyclic-by-finite conjugacy classes’, Boll. Un. Math. Ital., to appear.Google Scholar
[2]Gorčakov, Ju. M., ‘On embedding of locally normal groups in direct products of finite groups’, Dokl. Akad. Nauk SSSR 138 (1961), 2628.Google Scholar
[3]Hartley, B., ‘Serial subgroups of locally finite groups’, Proc. Cambridge Philos. Soc. 71 (1972), 199201.Google Scholar
[4]Neumann, B. H., ‘Groups with finite classes of conjugate subgroups’, Math. Z. 63 (1955), 7696.CrossRefGoogle Scholar
[5]Polovickii, Ja. D., ‘On locally extremal groups and groups with the π-minimal condition’, Dokl. Akad. Nauk SSSR 138 (1961), 10221024.Google Scholar
[6]Polovickii, Ja. D., ‘Groups with extremal classes of conjugate elements’, Sibirsk. Mat. Ž. 5 (1964), 891895.Google Scholar
[7]Robinson, D. J. S., Finiteness conditions and generalized soluble groups, Ergeb. Math. Grenzgeb. 6263, Springer, Berlin, 1972.Google Scholar
[8]Tomkinson, M. J., FC-groups, (Res. Notes in Math. 96, Pitman, Boston, Mass., 1984).Google Scholar