Article contents
NEW COMPLEX ANALYTIC METHODS IN THE THEORY OF MINIMAL SURFACES: A SURVEY
Published online by Cambridge University Press: 23 August 2018
Abstract
In this paper we survey recent developments in the classical theory of minimal surfaces in Euclidean spaces which have been obtained as applications of both classical and modern complex analytic methods; in particular, Oka theory, period dominating holomorphic sprays, gluing methods for holomorphic maps, and the Riemann–Hilbert boundary value problem. Emphasis is on results pertaining to the global theory of minimal surfaces, in particular, the Calabi–Yau problem, constructions of properly immersed and embedded minimal surfaces in $\mathbb{R}^{n}$ and in minimally convex domains of $\mathbb{R}^{n}$, results on the complex Gauss map, isotopies of conformal minimal immersions, and the analysis of the homotopy type of the space of all conformal minimal immersions from a given open Riemann surface.
MSC classification
- Type
- Research Article
- Information
- Copyright
- © 2018 Australian Mathematical Publishing Association Inc.
Footnotes
Antonio Alarcón is partially supported by the grants MTM2014-52368-P and MTM2017-89677-P from MINECO/FEDER, Spain. Franc Forstnerič is partially supported by the research program P1-0291 and the grant J1-7256 from ARRS, Republic of Slovenia.
References
- 12
- Cited by