No CrossRef data available.
Article contents
On Mahler's compound bodies
Published online by Cambridge University Press: 09 April 2009
Abstract
Let 1 ≤ M ≤ N − 1 be integers and K be a convex, symmetric set in Euclidean N-space. Associated with K and M, Mahler identified the Mth compound body of K, (K)m, in Euclidean (MN)-space. The compound body (K)M is describable as the convex hull of a certain subset of the Grassmann manifold in Euclidean (MN)-space determined by K and M. The sets K and (K)M are related by a number of well-known inequalities due to Mahler.
Here we generalize this theory to the geometry of numbers over the adèle ring of a number field and prove theorems which compare an adelic set with its adelic compound body. In addition, we include a comparison of the adelic compound body with the adelic polar body and prove an adelic general transfer principle which has implications to Diophantine approximation over number fields.
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 1993