Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T05:51:31.576Z Has data issue: false hasContentIssue false

On the lower central factors of free centre-by-metabelian groups

Published online by Cambridge University Press:  09 April 2009

N. D. Gupta
Affiliation:
University of Manitoba WinnipegManitoba R3T 2N2, Canada
T. C. Hurley
Affiliation:
University College Galway, Ireland
F. Levin
Affiliation:
Ruhr Universität4630 Bochum, West Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We describe the structure of the lower central factors of free centre-by-metabelian groups.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1985

References

1.Gupta, Chander Kanta, ‘The free centre-by-metabelian groups’, J. Austral. Math. Soc. 16 (1973), 294299.CrossRefGoogle Scholar
2.Gupta, Narain and Levin, Frank, ‘Separating laws for free centre-by-metabelian nilpotent groups’, Comm. Algebra 4 (1976), 249270.CrossRefGoogle Scholar
3.Hurley, T. C., ‘Representations of some relatively free groups in power series rings’, Proc. London Math. Soc. (3) 24 (1972), 257294.CrossRefGoogle Scholar
4.Magnus, Wilhelm, Karrass, Abraham and Solitar, Donald, Combinatorial group theory (Interscience, New York, 1966).Google Scholar
5.Neumann, Hanna, Varieties of groups (Springer-Verlag, New York, 1967).CrossRefGoogle Scholar
6.Ridley, J. N., ‘The free centre-by-metabelian group of rank two’, Proc. London Math. Soc. (3) 20 (1970), 321347.CrossRefGoogle Scholar
7.Šmelkin, A. L., ‘Free polynilpotent groups’, Izv. Akad. Nauk SSSR. Ser. Mat. 28 (1964), 91122;Google Scholar
English translation: Amer. Math. Soc. Transl. (2) 55 (1966), 270304.Google Scholar
8.Ward, M. A., ‘Basic commutators’, Philos. Trans. Roy. Soc. London. Ser. A. 264 (1969), 343412.Google Scholar