No CrossRef data available.
Article contents
Reducible 2 – (11, 5, 4) and 3 – (12, 6, 4) designs
Part of:
Designs and configurations
Published online by Cambridge University Press: 09 April 2009
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
One way of constructing a 2 – (11,5,4) design is to take together all the blocks of two 2 – (11,5,2) designs having no blocks in common. We show that 58 non-isomorphic 2 – (11,5,4) designs can be so made and that through extensions by complementation these can be packaged into just 12 non-isomorphic reducible 3 – (12,6,4) designs.
MSC classification
Secondary:
05B05: Block designs
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 1985
References
[1]Breach, D. R., ‘The 2 – (9, 4, 3) and 3 – (10, 5, 3) designs,’ J. Combin. Theory Ser. A 27 (1979), 50–63.CrossRefGoogle Scholar
[2]Breach, D. R., ‘Some 2 – (2n + 1, n, n – 1) designs with multiple extensions,’ Combinatorial Mathematics VI (Proceedings, Armidale, Australia) (Springer-Verlag Lecture Notes in Mathematics 748, 1979, 32–40).CrossRefGoogle Scholar
[3]Cameron, P. J. and van Lint, J. H., ‘Graphs, codes and designs’ (Lond. Math. Soc. Lecture Notes Series 43, CUP, 1980).Google Scholar
[4]Dembowski, P., Finite geometries (Ergebnisse der Mathematik 44, Springer-Verlag, 1968).CrossRefGoogle Scholar
[5]Sprott, D. A., ‘Balanced incomplete block designs and tactical configurations’, Ann. of Math. Stat. 26 (1955), 752–758.CrossRefGoogle Scholar
[6]Stanton, R. G., Mullin, R. C. and Bate, J. A., ‘Isomorphism classes of a set of prime BIBD parameters’, Ars Combinatoria 2 (1976), 251–264.Google Scholar
[7]Thompson, A. R., Decomposable 2 – (11,5,4) and 3 – (12, 6, 4) designs, (M. Sc. thesis, University of Canterbury, 1982).Google Scholar
You have
Access