Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T14:08:11.093Z Has data issue: false hasContentIssue false

On the choice of bandwidth for kernel graduation

Published online by Cambridge University Press:  20 April 2012

Abstract

This paper considers cross-validation as an objective and risk-based method for selecting the smoothing parameter in a non-parametric graduation. In addition, the relative merits of two kernel estimators are compared in the context of mortality graduation. Finally, it is well known in the statistical literature that the use of theoretically superior kernels is not as important as the choice of bandwidth. Our results support this conclusion, suggesting that the focus on such weights is misguided in the actuarial textbooks on moving weighted averages.

Type
Research Article
Copyright
Copyright © Institute and Faculty of Actuaries 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Benjamin, , & Pollard, J. H. (1980). The Analysis of Mortality and Other Actuarial Statistics. London: Heinemann.Google Scholar
Bloomfield, D. S. F. & Haberman, S. (1987). Graduation: Some experiments with kernel methods. J.I.A. 114, 339369.Google Scholar
Brooks, R. J., Stone, M., Chan, F. Y. & Chan, L. Y. (1988). Cross validatory graduation. Insurance: Mathematics and Economics 7, 5966.Google Scholar
Cleveland, W. S. (1979). Robust locally-weighted regression and smoothing scatterplots. Jour. Amer. Stat. Assoc. 74, 829836.CrossRefGoogle Scholar
Continuous Mortality Investigation Bureau (1983). Graduation of the mortality experience of female assured lives: 1975–78. Report Number 6, Institute and Faculty of Actuaries.Google Scholar
Copas, J. B. (1983). Plotting p against x. Applied Statistics 32, 2531.Google Scholar
Copas, J. B. & Haberman, S. (1983). Non-parametric graduation using kernel methods. J.I.A. 110, 135156.Google Scholar
Fan, J. (1992). Design-adaptive nonparametric regression. Jour. Amer. Stat. Assoc. 87, 9981004.CrossRefGoogle Scholar
Fan, J. & Gijbels, I. (1992). Variable bandwidth and local linear regression smoothing. Annals of Statistics 20(4), 20082031.CrossRefGoogle Scholar
Gavin, J. B., Haberman, S. & Verrall, R. J. (1993). Moving weighted average graduation using kernel estimation. Insurance: Mathematics and Economics 12, 113126.Google Scholar
Gavin, J. B., Haberman, S. & Verrall, R. J. (1995). Graduation by kernel and adaptive kernal methods with a boundary correction. To appear in Trans. Soc. Actuaries.Google Scholar
Gregoire, G. (1993). Least square cross validation for counting processes intensities. To appear in Scandinavian Journal of Statistics.Google Scholar
Hall, P. & Johnstone, I. M. (1992). Empirical functionals and efficient smoothing parameter selection (with discussion). Jour. Royal Statist. Soc. B (54), 475530.Google Scholar
Hall, P., Sheather, S. J., Jones, M. C. & Marron, J. S. (1991). On optimal data-based bandwidth selection in kernel density estimation. Biometrika 78, 263270.CrossRefGoogle Scholar
Hall, P. & Wehrly, T. E. (1991). A geometrical method for removing edge effects from kernel-type nonparametric regression estimates. Jour. Amer. Stat. Assoc. 86, 665672.CrossRefGoogle Scholar
Härdle, W., Hall, P. & Marron, J. S. (1988). How far are automatically chosen regression smoothing parameters from their optimum? (with comments). Jour. Amer. Stat. Assoc. 83, 86101.Google Scholar
Hastie, T. & Loader, C. (1993). Local regression: automatic kernel carpentry (with comments). Statistical Science 8(2), 120143.Google Scholar
Hastie, T. & Tibshirani, R.J. (1993). Varying-coefficient models (with discussion). Jour. Royal Statist Soc. B. 55, 757796.Google Scholar
Hastie, T. J. & Tibshirani, R. J. (1990). Generalized Additive Models. London: Chapman and Hall.Google Scholar
Hjort, N. L. (1994). Dynamic likelihood hazard rate estimation. To appear in Biometrika.Google Scholar
Hoem, J. M. & Linnemann, P. (1988) The tails in moving average graduation. Scand. Actuarial Jour., 193229.Google Scholar
Jones, M. C. (1993). Simple boundary correction for kernel density estimation. Statistics and Computing, 135146.Google Scholar
Jones, M. C., Davies, S. J. & Park, B. U. (1993). Versions of kernel-type regression estimators. To appear in Jour. Amer. Slat. Assoc.Google Scholar
Jones, M. C., Marron, J. S. & Sheather, S. J. (1993). Progress in data-based bandwidth selection for kernel density estimation. Private communication, submitted for publication.Google Scholar
London, D. (1985). Graduation—The Revision of Estimates. Winsted and Abington, Connecticut, USA: ACTEX Publications.Google Scholar
Nadaraya, E. A. (1964). On estimating regression. Theor. Prob. Appl. 9, 141142.Google Scholar
Nielsen, J. P. (1992). A transformation approach to bias correction in kernel hazard estimation. Research Report Number 115, Laboratory of Actuarial Mathematics, University of Copenhagen.Google Scholar
Ramlau-Hansen, H. (1983). The choice of a kernel function in the graduation of counting process intensities. Scand. Actuarial Jour., 165182.Google Scholar
Ramsay, C. M. (1993). Minimum variance moving-weighted-average graduation. Trans. Soc. Actuaries, 43.Google Scholar
Rice, J. A. (1984). Boundary modification for kernel regression. Communications in statistics—theory and methods 13, 893900.Google Scholar
Scott, D. W. (1992a). Constrained oversmoothing and upper bounds on smoothing parameters in regression and density estimation. Technical Report 92–8, Department of Statistics, Rice University.Google Scholar
Scott, D. W. (1992b). Multivariate Density Estimation; Theory, Practice and Visualisation. John Wiley & Sons.CrossRefGoogle Scholar
Sheather, S. J. & Jones, M. C. (1991). A reliable data-based bandwidth selection method for kernel density estimation. Jour. Royal Statist. Soc. B(53), 683690.Google Scholar
Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. London: Chapman and Hall.Google Scholar
Staniswalis, J. G. (1989). The kernel estimate of a regression function in likelihood-based models. Jour. Amer. Stat. Assoc. 84, 276283.Google Scholar
Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions (with discussion). Jour. Royal Statist. Soc. B(36), 111147.Google Scholar
Watson, G. S. (1964). Smooth regression analysis. Sankhya A(26), 359372.Google Scholar