Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T04:07:41.119Z Has data issue: false hasContentIssue false

TWISTED RUELLE ZETA FUNCTION ON HYPERBOLIC MANIFOLDS AND COMPLEX-VALUED ANALYTIC TORSION

Published online by Cambridge University Press:  22 January 2025

Polyxeni Spilioti*
Affiliation:
National Technical University of Athens, School of Applied Mathematical and Physical Sciences, Department of Mathematics, Heroon Polytechneiou 9, 15780 Zografou – Athens, Greece

Abstract

In this paper, we study the twisted Ruelle zeta function associated with the geodesic flow of a compact, hyperbolic, odd-dimensional manifold X. The twisted Ruelle zeta function is associated with an acyclic representation $\chi \colon \pi _{1}(X) \rightarrow \operatorname {\mathrm {GL}}_{n}(\mathbb {C})$, which is close enough to an acyclic, unitary representation. In this case, the twisted Ruelle zeta function is regular at zero and equals the square of the refined analytic torsion, as it is introduced by Braverman and Kappeler in [6], multiplied by an exponential, which involves the eta invariant of the even part of the odd-signature operator, associated with $\chi $.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atiyah, MF, Patodi, VK and Singer, IM (1975) Spectral asymmetry and Riemannian geometry. I. Math. Proc. Cambridge Philos. Soc. 77, 4369.CrossRefGoogle Scholar
Atiyah, MF, Patodi, VK and Singer, IM (1975) Spectral Asymmetry and Riemannian Geometry. II, Mathematical Proceedings of the Cambridge Philosophical Society, vol. 78. Cambridge University Press, 405432.Google Scholar
Bénard, L, Frahm, J and Spilioti, P (2023) The twisted Ruelle zeta function on compact hyperbolic orbisurfaces and Reidemeister–Turaev torsion. Journal de l’École polytechnique–Mathématiques 10, 13911439.CrossRefGoogle Scholar
Braverman, M and Kappeler, T (2007) Refined analytic torsion as an element of the determinant line. Geom. Topol. 11, 139213.CrossRefGoogle Scholar
Braverman, M and Kappeler, T (2008) A canonical quadratic form on the determinant line of a flat vector bundle. International Mathematics Research Notices 2008 (9), rnn030–rnn030.Google Scholar
Braverman, M and Kappeler, T (2008) Refined analytic torsion. J. Differential Geom. 78 (2), 193267.CrossRefGoogle Scholar
Bunke, U and Olbrich, M (1995) Selberg Zeta and Theta Functions, Mathematical Research, vol. 83. Berlin: Akademie-Verlag.Google Scholar
Cappell, SE and Miller, EY (2010) Complex-valued analytic torsion for flat bundles and for holomorphic bundles with (1, 1) connections. Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences 63 (2), 133202.CrossRefGoogle Scholar
Cekić, M, Delarue, B, Dyatlov, S and Paternain, GP (2022) The Ruelle zeta function at zero for nearly hyperbolic 3-manifolds. Inventiones mathematicae 229 (1), 303394.CrossRefGoogle Scholar
Chaubet, Y and Dan, NV (2024) Dynamical torsion for contact Anosov flows. Analysis & PDE 17 (8), 26192681.CrossRefGoogle Scholar
Cheeger, J (1979) Analytic torsion and the heat equation. Annals of Mathematics 109 (2), 259321.CrossRefGoogle Scholar
Chernoof, PR (1973) Essential self-adjointness of powers of generators of hyperbolic equations. J. Functional Analysis 12, 401414.CrossRefGoogle Scholar
Dan, NV, Guillarmou, C, Rivière, G and Shen, S (2020) The Fried conjecture in small dimensions. Inventiones mathematicae 220 (2), 525579.Google Scholar
De Rham, G (1936) Sur les nouveaux invariants topologiques de M. Reidemeister. Rec. Math. Moscou, n. Ser. 1, 737742.Google Scholar
Deitmar, A (1995) Higher torsion zeta functions. Advances in Mathematics 110 (1), 109128.CrossRefGoogle Scholar
Frahm, J and Spilioti, P (2023) Twisted ruelle zeta function at zero for compact hyperbolic surfaces. Journal of Number Theory 243, 3861.CrossRefGoogle Scholar
Franz, W (1935) Über die torsion einer Überdeckung. Journal für die reine und angewandte Mathematik 173, 245254.CrossRefGoogle Scholar
Fried, D (1986) Analytic torsion and closed geodesics on hyperbolic manifolds. Invent. Math. 84 (3), 523540.CrossRefGoogle Scholar
Fried, D (1987) Lefschetz formulas for flows. Contemp. Math 58, 1969.CrossRefGoogle Scholar
Friedrich, T (2000) Dirac Operators in Riemannian Geometry, Graduate Studies in Mathematics, vol. 25. Providence, RI: American Mathematical Society. Translated from the 1997 German original by Andreas Nestke.Google Scholar
Gilkey, PB (1984) The eta invariant and secondary characteristic classes of locally flat bundles. In Algebraic and Differential Topology—Global Differential Geometry, Teubner-Texte Math., vol. 70. Leipzig: Teubner, 4987. MR 792686Google Scholar
Gromoll, D, Klingenberg, W and Meyer, W (1968) Riemannsche Geometrie im Grossen, Lecture Notes in Mathematics, No. 55. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Grubb, G and Seeley, RT (1995) Weakly parametric pseudodifferential operators and Atiyah–Patodi–Singer boundary problems. Invent. Math. 121 (3), 481529.CrossRefGoogle Scholar
Hochs, P and Saratchandran, H (2023) A Ruelle dynamical zeta function for equivariant flows. arXiv:2303.00312.Google Scholar
Lawson, HB Jr, and Michelsohn, ML (1989) Spin Geometry, Princeton Mathematical Series, vol. 38. Princeton, NJ: Princeton University Press.Google Scholar
Markus, AS (1988) Introduction to the Spectral Theory of Polynomial Operator Pencils, Translations of Mathematical Monographs, vol. 71. Providence, RI: American Mathematical Society. Translated from the Russian by H. H. McFaden, translation edited by Ben Silver, with an appendix by M. V. Keldysh.Google Scholar
Marshall, S and Müller, W (2013) On the torsion in the cohomology of arithmetic hyperbolic 3-manifolds. Duke Math. J. 162 (5), 863888.CrossRefGoogle Scholar
Matsushima, Y and Murakami, S (1963) On vector bundle valued harmonic forms and automorphic forms on symmetric Riemannian manifolds. Ann. of Math. ( 2 ) 78, 365416.CrossRefGoogle Scholar
Miatello, RJ (1980) The Minakshisundaram–Pleijel coefficients for the vector-valued heat kernel on compact locally symmetric spaces of negative curvature. Trans. Amer. Math. Soc. 260 (1), 133.Google Scholar
Millson, JJ (1978) Closed geodesics and the $\eta$ -invariant. Annals of Mathematics 108 (1), 139.CrossRefGoogle Scholar
Milnor, J (1966) Whitehead torsion. Bulletin of the American Mathematical Society 72 (3), 358426.CrossRefGoogle Scholar
Moscovici, H and Stanton, RJ (1991) R-torsion and zeta functions for locally symmetric manifolds. Inventiones mathematicae 105 (1), 185216.CrossRefGoogle Scholar
Moscovici, H, Stanton, RJ and Frahm, J (2018) Holomorphic torsion with coefficients and geometric zeta functions for certain Hermitian locally symmetric manifolds. arXiv:1802.08886 (2018).Google Scholar
Müller, W (1978) Analytic torsion and R-torsion of Riemannian manifolds. Advances in Mathematics 28 (3), 233305.CrossRefGoogle Scholar
Müller, W (2011) A Selberg trace formula for non-unitary twists. Int. Math. Res. Not. ImrN (9), 20682109.Google Scholar
Müller, W (2012) The asymptotics of the Ray–Singer analytic torsion of hyperbolic 3-manifolds. In Metric and Differential Geometry, the Jeff Cheeger Anniversary Volume, Selected Papers Based on the Presentations at the International Conference on Metric and Differential Geometry, Tianjin and Beijing, China, May 11–15, 2009. Berlin: Springer, 317352.CrossRefGoogle Scholar
Müller, W (2021) Ruelle zeta functions of hyperbolic manifolds and Reidemeister torsion. The Journal of Geometric Analysis 31 (12), 1250112524.CrossRefGoogle Scholar
Park, J (2009) Analytic torsion and Ruelle zeta functions for hyperbolic manifolds with cusps. Journal of Functional Analysis 257 (6), 17131758.CrossRefGoogle Scholar
Pfaff, J (2012) Selberg and Ruelle Zeta Functions and the Relative Analytic Torsion on Complete Odd-Dimensional Hyperbolic Manifolds of Finite Volume. PhD thesis, Bonn.CrossRefGoogle Scholar
Pfaff, J (2014) Analytic torsion versus Reidemeister torsion on hyperbolic 3-manifolds with cusps. Mathematische Zeitschrift 277 (3-4), 953974.CrossRefGoogle Scholar
Pfaff, J (2015) Selberg zeta functions on odd-dimensional hyperbolic manifolds of finite volume. Journal für die Reine und Angewandte Mathematik (Crelles Journal) 2015 (703), 115145.CrossRefGoogle Scholar
Ray, DB and Singer, IM (1971) $R$ -torsion and the Laplacian on Riemannian manifolds. Advances in Math. 7, 145210.CrossRefGoogle Scholar
Reidemeister, K (1935) Homotopieringe und linsenräume, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, vol. 11. Springer, 102109.Google Scholar
Rudyak, YB and Rudjak, J (1998) On Thom Spectra, Orientability, and Cobordism. Springer Science & Business Media.Google Scholar
Seeley, RT (1967) Complex powers of an elliptic operator. Proc. Symp. Pure Math. 10, 288307.CrossRefGoogle Scholar
Shen, S (2018) Analytic torsion, dynamical zeta functions, and the Fried conjecture. Analysis and PDE 11 (1).CrossRefGoogle Scholar
Shen, S (2021) Complex valued analytic torsion and dynamical zeta function on locally symmetric spaces. International Mathematics Research Notices 2023 (5), 36763745.CrossRefGoogle Scholar
Spilioti, P (2018) Selberg and Ruelle zeta functions for non-unitary twists. Annals of Global Analysis and Geometry 53 (2), 151203.CrossRefGoogle Scholar
Spilioti, P (2020) Functional equations of Selberg and Ruelle zeta functions for non-unitary twists. Annals of Global Analysis and Geometry 58 (1), 3577.CrossRefGoogle Scholar
Wall, CTC (1960) Determination of the cobordism ring. Annals of Mathematics 292311.CrossRefGoogle Scholar
Wallach, NR (1976) On the Selberg trace formula in the case of compact quotient. Bull. Amer. Math. Soc. 82 (2), 171195.CrossRefGoogle Scholar
Wotzke, A (2008) Die Ruellesche Zetafunktion und die analytische Torsion hyperbolischer Mannigfaltigkeiten. PhD thesis, Bonn, Bonner Mathematische Schriften, 2008.Google Scholar