Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T11:21:30.844Z Has data issue: false hasContentIssue false

Effects of anti-trawling artificial reefs on ecological indicators of inner shelf fish and invertebrate communities in the Cantabrian Sea (southern Bay of Biscay)

Published online by Cambridge University Press:  02 June 2010

Alberto Serrano*
Affiliation:
Instituto Español de Oceanografía, Laboratorio de Santander, Promontorio San Martín s/n, 39004, Santander, Spain
Cristina Rodríguez-Cabello
Affiliation:
Instituto Español de Oceanografía, Laboratorio de Santander, Promontorio San Martín s/n, 39004, Santander, Spain
Francisco Sánchez
Affiliation:
Instituto Español de Oceanografía, Laboratorio de Santander, Promontorio San Martín s/n, 39004, Santander, Spain
Francisco Velasco
Affiliation:
Instituto Español de Oceanografía, Laboratorio de Santander, Promontorio San Martín s/n, 39004, Santander, Spain
Ignacio Olaso
Affiliation:
Instituto Español de Oceanografía, Laboratorio de Santander, Promontorio San Martín s/n, 39004, Santander, Spain
Antonio Punzón
Affiliation:
Instituto Español de Oceanografía, Laboratorio de Santander, Promontorio San Martín s/n, 39004, Santander, Spain
*
Correspondence should be addressed to: A. Serrano, Instituto Español de Oceanografía, Laboratorio de Santander, Promontorio San Martín s/n, 39004 Santander, Spain email: aserrano@st.ieo.es

Abstract

The analyses presented in this paper provide evidence that several community metrics and indicators of the inner shelf community in the Cantabrian Sea show response to placement of anti-trawling reefs. Total biomass, species richness, and to a lesser extent, maximum length and percentage of large fish, were sensitive to exclusion of trawling. Density, diversity and average trophic level did not show this sensitivity. The main species profiting from trawl exclusion were seabreams (Sparidae), catsharks and skates (Elasmobranchii), red mullets (Mullidae), gurnards (Triglidae) and John Dory (Zeus faber). Conversely, the main fishery target species (hake, anglerfish and megrim) showed a progressive decrease in abundance during the study period, a pattern which was also shown by their total stock biomass in the totality of the shelf area. Sea urchins, cephalopods and gastropods also increased in relative abundance with trawl exclusion. Reef age was identified as a key factor in reef development. After reef deployments, two periods were identified: (1) a recovery period, in which total biomass increased, mainly as a consequence of the increase in generalist species (e.g. catsharks); and (2) a consolidation period, during which biomass increased again, mainly as a consequence of an increase in specialized stenoic species (e.g. sparids), while biomass of generalist species remained constant or declined.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blanchard, J.L., Dulvy, N.K., Jennings, S., Ellis, J.R., Pinnegar, J.K., Tidd, A. and Kell, L.T. (2005) Do climate and fishing influence size-based indicators of Celtic Sea fish community structure? ICES Journal of Marine Science 62, 405411.CrossRefGoogle Scholar
Bombace, G. (1989) Artificial reefs in the Mediterranean Sea. Bulletin of Marine Science 44, 10231032.Google Scholar
Connell, J.H. (1978) Diversity in tropical rain forests and coral reefs. Science 199, 13021310.CrossRefGoogle ScholarPubMed
De Groot, S.J. (1972) Some further experiments on the influence of the beam trawl on the bottom fauna. International Council for the Exploration of the Sea (CM Papers and Reports), CM 1972/B: 6, 7 pp.Google Scholar
De Groot, S.J. (1984) The impact of bottom trawling on benthic fauna in the North Sea. Ocean Management 9, 177190.CrossRefGoogle Scholar
Fonteyne, R. (2000) Physical impact of beam trawls on sea bed sediments. In Kaiser, M.J. and de Groot, S.J. (eds) Effects of fishing on non-target species and habitats. Biological conservation and socio-economic issues. Oxford: Blackwell Science Ltd, pp. 1536.Google Scholar
Froese, R. and Pauly, D. (2007) FishBase. World Wide Web electronic publication version (10/2007). Internet Page, http://www.fishbase.org.Google Scholar
Greenstreet, S. and Rogers, S. (2006) Indicators of the health of the North Sea fish community: identifying reference levels for an ecosystem approach to management. ICES Journal of Marine Science 63, 573593.CrossRefGoogle Scholar
Herrera, R., Espino, F., Garrido, M. and Haroun, R.J. (2002) Observations on fish colonization and predation on two artificial reefs in the Canary Islands. ICES Journal of Marine Science 59, 6973.CrossRefGoogle Scholar
Hueckel, G.J. and Buckley, R.M. (1987) The influence of prey communities on fish species assemblages on artificial reefs in Puget Sound, Washington. Environmental Biology of Fishes 19, 195214.CrossRefGoogle Scholar
ICES (2005) Report of the Working Group on Ecosystem Effects of Fishing Activities (WGECO). International Council for the Exploration of the Sea, ICES ACE: 04, 146 pp.Google Scholar
Jennings, S., Pinnegar, J.K., Polunin, N.V.C. and Warr, K.J. (2001) Impacts of trawling disturbance on the trophic structure of benthic invertebrates communities. Marine Ecology Progress Series 213, 127142.CrossRefGoogle Scholar
Kaiser, M.J. (1996) Starfish damage as an indicator of trawling intensity. Marine Ecology Progress Series 134, 303307.CrossRefGoogle Scholar
Katsanevakis, S. and Verriopoulos, G. (2004) Den ecology of Octopus vulgaris Cuvier, 1797, on soft sediment: availability and types of shelter. Scientia Marina 68, 147157.Google Scholar
Leitao, F., Santos, M.N. and Monteiro, C.C. (2007) Contribution of artificial reefs to the diet of the white sea bream (Diplodus sargus). ICES Journal of Marine Science 64, 473478.CrossRefGoogle Scholar
Lindeboom, H.J. and de Groot, S.J. (1998) The effects of different types of fisheries on the North Sea and Irish Sea benthic ecosystems. NIOZ Report 1998-1/RIVO-DLO Report C003/98. Netherlands Institute of Sea Research, Texel, 404 p.Google Scholar
Lloret, J. and Planes, S. (2003) Condition, feeding and reproductive potential of white seabream Diplodus sargus as indicators of habitat quality and the effect of reserve protection in the northwestern Mediterranean. Marine Ecology Progress Series 248, 197208.CrossRefGoogle Scholar
Moreno, I. (2002) Effects of substrate on the artificial reef fish assemblage in Santa Eulalia Bay (Ibiza, western Mediterranean). ICES Journal of Marine Science 59, S144S149.CrossRefGoogle Scholar
Pipitone, C., Badalamenti, F., D'Anna, G. and Patti, B. (2000) Fish biomass increase after a four-year trawl ban in the Gulf of Castellammare (NW Sicily, Mediterranean Sea). Fisheries Research 48, 2330.CrossRefGoogle Scholar
Punzón, A., Pereda, P., Villamor, B. and Gancedo, R.M. (1999) Evolución de las pesquerías pelágicas y demersales de la flota del mar Cantábrico entre 1982 y 1994. Informes Técnicos del IEO 174, 50 p.Google Scholar
Punzón, A. and Gancedo, R.M. (2000) Descripción de las pesquerías artesanales de Cantabria y Asturias (norte de España). Informes Técnicos IEO 179, 43 pp.Google Scholar
Revenga, S., Fernández, F., González, J.L. and Santaella, E. (2000) Artificial reefs in Spain: the regulatory framework. In Jensen, A.C., Collins, K.J. and Lockwood, A.P.M. (eds) Artificial reefs in European seas. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 185194.CrossRefGoogle Scholar
Rodríguez-Cabello, C., Sánchez, F. and Olaso, I. (2007) Distribution patterns and sexual segregations of Scyliorhinus canicula (L.) in the Cantabrian Sea. Journal of Fish Biology 70, 15681586.CrossRefGoogle Scholar
Rodríguez-Cabello, C., Sánchez, F., Serrano, A. and Olaso, I. (2008) Effects of closed trawl fishery areas on some elasmobranch species in the Cantabrian Sea. Journal of Marine Systems 72, 418428.CrossRefGoogle Scholar
Sánchez, F. (1993) Las comunidades de peces de la plataforma del Cantábrico. Publicaciones Especiales del Instituto Español de Oceanografía 13,137 pp.Google Scholar
Sánchez, F., Pérez, N. and Landa, J. (1998) Distribution and abundance of megrim (Lepidorhombus boscii and Lepidorhombus whiffiagonis) on the northern Spanish shelf. ICES Journal of Marine Science 55, 494514.CrossRefGoogle Scholar
Sánchez, F., Blanco, M. and Gancedo, R. (2002) Atlas de los peces demersales y de los invertebrados de interés comercial de Galicia y el Cantábrico. Otoño 1997–1999. Madrid: Edición CYAN, 158 pp.Google Scholar
Sánchez, F. and Serrano, A. (2003) Variability of groundfish communities of the Cantabrian Sea during the 1990s. ICES Marine Science Symposia 219, 249260.Google Scholar
Santos, M.N. and Monteiro, C.C. (2007) A fourteen-year overview of the fish assemblage and yield of the two oldest Algarve artificial reefs (southern Portugal). Hydrobiologia 580, 225231.CrossRefGoogle Scholar
Serrano, A., Velasco, F., Olaso, I. and Sánchez, F. (2003) Macrobenthic crustaceans in the diet of demersal fish in the Bay of Biscay in relation to abundance in the environment. Sarsia 88, 3648.CrossRefGoogle Scholar
Serrano, A., Sánchez, F. and García-Castrillo, G. (2006) Epibenthic communities of trawlable grounds of the Cantabrian Sea. Scientia Marina 70S1, 149159.CrossRefGoogle Scholar
Shin, Y.J., Rochet, M.J., Jennings, S., Field, J.G. and Gislason, H. (2005) Using size-based indicators to evaluate the ecosystem effects of fishing. ICES Journal of Marine Science 32, 384396.CrossRefGoogle Scholar
Trenkel, V.M. and Rochet, M.J. (2003) Performance of indicators derived from abundance estimates for detecting the impact of fishing on a fish community. Canadian Journal of Fisheries and Aquatic Science 60, 6785.Google Scholar
Underwood, A.J. (1992) Beyond BACI: the detection of environmental impacts on populations in the real, but variable, world. Journal of Experimental Marine Biology and Ecology 161, 145178.CrossRefGoogle Scholar