A comparative study of seed germination was performed on 25 species of trees, shrubs, woody climbers and herbs from the dry Afromontane forest zone of Ethiopia. Despite the restricted geographical range of the species tested, the optimum constant temperature for germination varied considerably. For 17 of the species studied, it was between 20 and 25 °C while for three, germination was highest at 30 °C Germination was virtually inhibited (<20%) for eight of the species at 10 °C and eight of the species at 30 °C. There was no clear division in temperature response between plants differing in habitat. For four out of 12 species tested, fluctuating temperatures (20/12 °C) resulted in significantly higher germination than the constant temperature treatment (20 °C), suggesting that field-germination would be favoured by disturbance to the canopy or soil. Speed of germination was negatively correlated with the logarithum of seed size. Most species lay in the range 3–15 d to reach 50% of final germination at their optimum temperature for germination. Germination was significantly suppressed in darkness for a large number of species, particularly for those with seed size less than c. 3 mg. When these were incubated under leaf-filtered light, germination was in most cases even more effectively suppressed. Most of these species are known to have large soil seed banks. Mechanical scarification improved germination over the control in nine species. Five of these also reponded to heat or sulphuric acid scarification. Circumstantial evidence suggests that the species showing heat-induced germination may be fire adapted, although fire is probably a rare natural phenomenon in the Afromontane forest proper. Only one species, Bersama abyssinica, showed a classic recalcitrant behaviour. Germination dropped from 88% when the seeds were fresh to less than 20% after 1 mo of dry storage and 0% after 3 mo. Germinability of seeds of Ekebergia capensis also declined significantly with increasing storage time, although less rapidly; after 24 mo of dry storage, germination was 4%. In contrast, germinability of Juniperus procera was not significantly altered during 54 mo of storage. The results indicate that dormancy plays a major role in regulating germination in dry Afromontane species. Out of the 25 species studied, 15 (60%) showed some degree of initial dormancy. In most of the species with initially non-dormant seeds, dormancy would evidently be induced if the seeds are dispersed under a closed forest canopy or buried in the soil. These patterns of dormancy may have evolved in response to a highly unpredictable climate and small-scale disturbances, and should make the Afromontane forest flora relatively resilent also to anthropogenic disturbances.