Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T20:16:49.406Z Has data issue: false hasContentIssue false

Bridging the gap between two stream and filamentation instabilities

Published online by Cambridge University Press:  30 August 2005

ANTOINE BRET
Affiliation:
Laboratoire de Physique des Gaz et des Plasmas, Université Paris XI, Orsay, France
MARIE-CHRISTINE FIRPO
Affiliation:
Laboratoire de Physique des Gaz et des Plasmas, Université Paris XI, Orsay, France
CLAUDE DEUTSCH
Affiliation:
Laboratoire de Physique des Gaz et des Plasmas, Université Paris XI, Orsay, France

Abstract

We investigate intermediate unstable modes between two stream and filamentation instabilities. We detail the problem of the angle between the wave vector and its electric field and use an electromagnetic formalism allowing for any value for this angle. We display analytical results for 3 different models: cold beam-cold plasma, cold beam-hot plasma and cold relativistic beam-hot plasma. We demonstrate that plasma temperature prompts a critical angle for which waves are unstable at any k and show that for a relativistic beam, the most unstable waves are obtained for wave vectors which are neither normal nor perpendicular to the beam.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Califano, F., Pegoraro, F., Bulanov, S.V. & Mangeney, A. (1998). Kinetic saturation of the weibel instability in a collisionless plasma. Phys. Rev. E 57, 7048.Google Scholar
Deutsch, C. (2003). Transport of megaelectron volt protons for fast ignition. Laser Part. Beams 21, 3335.Google Scholar
Deutsch, C., Bret, A. & Fromy, P. (2005). Mitigation of electromagnetic instabilities in fast ignition scenario. Laser Part. Beams 23, 58.Google Scholar
Deutsch, C., Furukawa, H., Mima, K., Murakami, M. & Nishihara, K. (1997). Interaction physics of the fast ignitor concept. Laser Part. Beams 15, 577.Google Scholar
Fainberg, Y.B., Shapiro, V. & Shevchenko, V. (1970). Nonlinear theory of interaction between a monochromatic beam of relativistic electrons and a plasma. Soviet Phys. JETP 30, 528.Google Scholar
Godfrey, B.B., Shanahan, W.R. & Thode, L.E. (1975). Linear theory of a cold relativistic beam propagating along an external magnetic field. Phys. Fluids 18, 346.Google Scholar
Ichimaru, S. (1973). Basic Principles of Plasma Physics. Reading, MA: W.A. Benjamin, Inc.
Koch, J., Back, C., Brown, C., Estabrook, K., Hammel, B., Hatchett, S., Key, M., Kilkenny, J., Landen, O., Lee, R., Moody, J., Offenberger, A., Pennington, D., Ferry, M., Tabak, M., Yanovsky, V., Wallace, R., Wharton, K. & Wilks, S. (1998). Time-resolved x-ray spectroscopy of deeply buried tracer layers as a density and temperature diagnostic for the fast ignitor. Laser Part. Beams 16, 225.Google Scholar
Landau, L.D. & Lifshitz, E.M. (1981). Course of Theoretical Physics, Physical Kinetics, New York: Pergamon Press.
Mulser, P. & Bauer, D. (2004). Fast ignition of fusion pellets with superintense lasers: Concepts, problems, and prospectives. Laser Part. Beams 22, 512.Google Scholar
Okada, T., Sajiki, I. & Satou, K. (1999). Weibel instability by ultraintense laser pulses. Laser Part. Beams 17, 515.Google Scholar
Silva, L.O., Fonseca, R.A., Tonge, J.W., Mori, W.B. & Dawson, J.M. (2002). On the role of the purely transverse Weibel instability in fast ignitor scenarios. Phys. Plasmas 9, 2458.Google Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high-gain with ultrapowerful lasers. Phys. Plasmas 1, 1626.Google Scholar
Tatarakis, M., Beg, F.N., Clark, E.L., Dangor, A.E., Edwards, R.D., Evans, R.G., Goldsack, T.J., Ledingham, K.W.D., Norreys, P.A., Sinclair, M.A., Wei, M.-S., Zepf, M. & Krushelnick, K. (2003). Propagation instabilities of high-intensity laser-producted electron beams. Phys. Rev. Lett. 90, 175001.Google Scholar
Umstadter, D. (2003). Relativistic laser-plasma interactions. J. Phys. D 36, 151.Google Scholar
Weibel, E.S. (1959). Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution. Phys. Rev. Lett. 2, 83.Google Scholar
Yoon, P.H. & Davidson, R.C. (1987). Exact analytical model of the classical weibel instability in a relativistic anisotropic plasma. Phys. Rev. A 35, 2718.Google Scholar