Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-11T06:04:11.706Z Has data issue: false hasContentIssue false

Controlling ultrashort intense laser pulses by plasma Bragg gratings with ultrahigh damage threshold

Published online by Cambridge University Press:  05 December 2005

H.-C. WU
Affiliation:
Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
Z.-M. SHENG
Affiliation:
Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
Q.-J. ZHANG
Affiliation:
Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
Y. CANG
Affiliation:
Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
J. ZHANG
Affiliation:
Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China

Abstract

Propagation of ultrashort intense laser pulses in a plasma Bragg grating induced by two counterpropagating laser pulses has been investigated. Such a plasma grating exhibits an ultrawide photonic band gap, near which strong dispersion appears. It is found that the grating dispersion dominates the dispersion of background plasma by several orders of magnitude. Particle-in-cell (PIC) simulations show light speed reduction, pulse stretching, and chirped pulse compression in the plasma grating. The nonlinear coupled-mode theory agrees well with the PIC results. Because the plasma grating has a much higher damage threshold than the ordinary optical elements made of metal or dielectric, it can be a novel tool for controlling femtosecond intense laser pulses.

Type
Workshop on Fast High Density Plasma Blocks Driven By Picosecond Terawatt Lasers
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agrawal, G.P. (1995). Nonlinear Fiber Optics. San Diego: Academic Press.
Agrawal, G.P. (2001). Applications of Nonlinear Fiber Optics. San Diego: Academic Press.
Backus, S., Kapteyn, H.C., Murnane, M.M., Gold, D.M., Nathel, H. & White, W. (1993). Prepulse suppression for high-energy ultrashort pulses using self-induced plasma shuttering from a fluid target. Opt. Lett. 18, 134136.Google Scholar
Batani, D. & Wootton, A.J. (2004). Guest editor's preface: The international conference on ultrashort high-energy radiation and matter. Laser Part. Beams 22, 197197.Google Scholar
Broderick, N.G.R., Richardson, D.J. & Ibsen, M. (1998). Nonlinear switching in a 20-cm-long fiber Bragg grating. Opt. Lett. 25, 536538.Google Scholar
Bulanov, S.V., Esirkepov T., &Tajima, T. (2003). Light intensification towards the Schwinger limit. Phys. Rev. Lett. 91, 085001.Google Scholar
Chirila, C.C., Joachain, C.J., Kylstra, N.J. & Potvliege, R.M. (2004). Interaction of ultra-intense laser pulses with relativistic ions. Laser Part. Beams 22, 203206.Google Scholar
Doumy, G., Quere, F., Gobert, O., Perdrix, M. & Martin, Ph. (2004). Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulses. Phys. Rev. E 69, 026402.Google Scholar
Dreher, M. (2004). Observation of superradiant amplification of ultrashort laser pulses in a plasma. Phys. Rev. Lett. 93, 095001.Google Scholar
Eggleton, B.J., Slusher, R.E., Sterke, C.M., Krug, P.A. & Sipe, J.E. (1996). Bragg grating solitons. Phys. Rev. Lett. 76, 16271630.Google Scholar
Eggleton, B.J., Sterke, C.M. & Slusher, R.E. (1997). Nonlinear pulse propagation in Bragg gratings. J. Opt. Soc. Am. B 14, 29802993.Google Scholar
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1997). Self-focusing and guiding of short laser pulses in ionizing gases and plasmas. IEEE J. Quan. Elect. 33, 18791914.Google Scholar
Fukuda, Y., Akahane, Y., Aoyama, M., Inoue, N., Ueda, H., Kishimoto, Y., Yamakawa, K., Faenov, A.Y., Magunov, A.I., Pikuz, T.A., Skobelev, I.Y., Abdallah, J., Csanak, G., Boldarev, A.S. & Gasilov V.A. (2004). Generation of X rays and energetic ions from superintense laser irradiation of micron-sized Ar clusters. Laser Part. Beams 22, 215220.Google Scholar
Gamaly, E.G., Rode, A.V., Luther-Davies, B. & Tikhonchuk, V.T. (2002). Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics. Phys. Plasmas 9, 949957.Google Scholar
Gold, D.M. (1994). Direct measurement of prepulse suppression by use of a plasma shutter. Opt. Lett. 19, 20062008.Google Scholar
Haus, J.W., Soon, B.Y., Scalora, M., Sibilia, C. & Melnikov I.V. (2002). Coupled-mode equations for Kerr media with periodically modulated linear and nonlinear coefficients. J. Opt. Soc. Am. B 19, 22822291.Google Scholar
Honrubia, J. & Tikhonchuk, V. (2004). Guest editors' preface: Workshop on simulations of ultra intense laser beams interaction with matter, and references therein. Laser Part. Beams 22, 9595.Google Scholar
Iizuka, T. & Sterke, C.M. (2000). Corrections to coupled mode theory for deep gratings. Phys. Rev. E 61, 44914499.Google Scholar
Jovanovic, I., Brown, C., Wattellier, B., Nielsen, N., Molander, W., Stuart, B., Pennington, D. & Barty, C.P.J. (2004). Precision short-pulse damage test station utilizing optical parametric chirped-pulse amplification. Rev. Sci. Instr. 75, 51935202.Google Scholar
Kapteyn, H.C., Murnane, M.M., Szbke, A. & Falcone, R.W. (1991). Prepulse energy suppression for high-energy ultrashort pulses using self-induced plasma shuttering. Opt. Lett. 16, 490492.Google Scholar
Limpouch, J., Klimo, O., Bina, V. & Kawata, S. (2004). Numerical studies on the ultrashort pulse K-alpha emission sources based on femtosecond laser-target interactions. Laser Part. Beams 22, 147156.Google Scholar
Longhi, S., Taccheo, S. & Laporta, P. (1997). High-repetition-rate picosecond pulse generation at 1.5 μm by intracavity laser frequency modulation. Opt. Lett. 22, 16421644.Google Scholar
Magunov, A.I., Faenov, A.Y., Skobelev, I.Y., Pikuz, T.A., Dobosz, S., Schmidt, M., Perdrix, M., Meynadier, P., Gobert, O., Normand, D., Stenz, C., Bagnoud, V., Blasco, F., Roche, J.R., Salin, F. & Sharkov, B.Y. (2003). X-ray spectra of fast ions generated from clusters by ultrashort laser pulses. Laser Part. Beams 21, 7379.Google Scholar
Malkin, V.M., Shvets, G. & Fisch, N.J. (1999). Fast compression of laser beams to highly overcritical powers. Phys. Rev. Lett. 82, 44484451.Google Scholar
Perry, M.D., Pennington, D., Stuart, B.C., Tietbohl, G., Britten, J.A., Brown, C., Herman, S., Golick, B., Kartz, M., Miller, J., Powell, H.T., Vergino, M. & Yanovsky, V. (1999a). Petawatt laser pulses. Opt. Lett. 24, 160162.Google Scholar
Perry, M.D., Stuart, B.C., Banks, P.S., Feit, M.D., Yanovsky, V. & Rubenchik, A.M. (1999b). Ultrashort-pulse laser machining of dielectric materials. J. Appl. Phys. 85, 68036810.Google Scholar
Ping, Y., Cheng, W., Suckewer, S., Clark, D.S. & Fisch, N.J. (2004). Amplification of ultrashort laser pulses by a resonant Raman scheme in a gas-jet plasma. Phys. Rev. Lett. 92, 175007.Google Scholar
Shen, B.F. & Yu, M.Y. (2002). High-intensity laser-field amplification between two foils. Phys. Rev. Lett. 89, 275004.Google Scholar
Sheng, Z.M., Zhang, J. & Umstadter, D. (2003). Plasma density gratings induced by intersecting laser pulses in underdense plasmas. Appl. Phys. B 77, 673680.Google Scholar
Shorokhov, O., Pukhov, A. & Kostyukov, I. (2003). Self-compression of laser pulses in plasma. Phys. Rev. Lett. 91, 265002.Google Scholar
Shvets, G., Fisch, N.J., Pukhov, A. & Meyer-Ter-Vehn, J. (1998). Superradiant amplification of an ultrashort laser pulse in plasma by a counterpropagating pump. Phys. Rev. Lett. 81, 48794882.Google Scholar
Sterke, C.M., Jackson, K.R. & Robert, B.D. (1991). Nonlinear coupled-mode equations on a finite interval: a numerical procedure. J. Opt. Soc. Am. B 8, 403412.Google Scholar
Strickland, D. & Mourou, G. (1985). Compression of amplified chirped optical pulses. Opt. Commun. 56, 219221.Google Scholar
Taverner, D., Broderick, N.G.R., Richardson, D.J., Laming, R.I. & Ibsen, M. (1998). Nonlinear self-switching and multiple gap-soliton formation in a fiber Bragg grating. Opt. Lett. 23, 328330.Google Scholar
Winful, H.G. (1985). Pulse compression in fiber filters. Appl. Phys. Lett. 46, 527529.Google Scholar
Wu, H.C., Sheng, Z.M., Zhang, Q.J., Cang, Y. & Zhang, J. (2005). (submitted).