Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-11T05:13:45.099Z Has data issue: false hasContentIssue false

Effect of convergence on growth of the Richtmyer-Meshkov instability

Published online by Cambridge University Press:  02 June 2005

J.R. FINCKE
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico
N.E. LANIER
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico
S.H. BATHA
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico
R.M. HUECKSTAEDT
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico
G.R. MAGELSSEN
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico
S.D. ROTHMAN
Affiliation:
AWE Aldermaston, United Kingdom
K.W. PARKER
Affiliation:
AWE Aldermaston, United Kingdom
C.J. HORSFIELD
Affiliation:
AWE Aldermaston, United Kingdom

Abstract

Strongly shocked cylindrically convergent implosions were conducted on the OMEGA laser. The directly driven targets consist of a low-density foam core and an embedded aluminum shell covered by an epoxy ablator. The outer surface of the aluminum shell has imposed single-mode perturbations with wave numbers k = 0.25, 0.7, 1.05, and 2.5 (rad/μm) and initial amplitudes η0 /λ = 0.04, 0.11, 0.33, and 0.4. In our convergent geometry, perturbation growth without evidence of saturation, for η/λ as large as 4.5 is observed for k < 1. For k > 1 growth rate scaling with wavenumber breaks down and transition to turbulence is suggested.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bell, G.I. (1951). LA-1321, Los Alamos National Laboratory.Google Scholar
Boehly, T., Brown, D.L., Craxton, R.L. Keck, J.P., Knauer, J.P., Kelly, J.H., Kessler, T.J., Kumpan, S.A., Loucks, S.J., Letzring, S.A., Marshall, F.J., Mccrory, R.L., Morse, S.F.B., Seka, W., Soures, J.M., &Verdon, C.P. (1997). Opt. Comm. 133, 495.Google Scholar
Brouillette, M. (2002). Annu. Rev. Fluid Mech. 34, 445468.CrossRefGoogle Scholar
Dimonte, G. & Remington, B. (1993). Phys. Rev. Lett. 70, 18061809.CrossRefGoogle Scholar
Glimm, J., Grove, J., Zhang, Y. & Dutta, S. (2002). J. Stat. Phys. 107, 241260.CrossRefGoogle Scholar
Holder, D.A., Smith, A.V., Barton, C.J. & Youngs, D.L. (2003). Laser Part. Beams 21, 40034009.Google Scholar
Holmes, R.L., Dimonte, G., Fryxell, B., Gittings, M.L., Grove, J.W., Schneider, M., Sharp, D.H., Velikovich, A.L., Weaver, R.P. & Zhang, Q. (1999). J. Fluid Mech. 389, 5579.CrossRefGoogle Scholar
Hosseini, S.H.R. & Takayama, K. (2001). Inertial Fusion Science and Application (Tanaka, K., Meyerhofer, D.D. & Meyer-ter-Vehn, J., Eds.). New York: Elsivier.Google Scholar
Jacobs, J.W., Jenkins, D.G., Klein, D.L. & Benjamin, R.F. (1995). J. Fluid Mech. 295, 2342.CrossRefGoogle Scholar
Lanier, N.E., Barnes, C.W., Batha, S.H., Dar, R.D., Magelssen, G.R., Scott, J.M., Dunne, A.M., Parker, K.W. & Rothman, S.D. (2003). Phys. Plas. 10, 18161821.CrossRefGoogle Scholar
Meshkov, E.E. (1969). Mekhanika Zhidkosti I Gaza 4, 151157.Google Scholar
Meyer, K.A. & Blewett, P.J. (1972). Phys. Fluids 15, 753759.Google Scholar
Mikaelian, K.O. (1990). Phys. Rev. A 42, 34003420.CrossRefGoogle Scholar
Mikaelian, K.O. (1995). Phys. Fluids 7, 888890.CrossRefGoogle Scholar
Richtmyer, R.D. (1960). Commun. Pure Appl. Math. 13, 297319.CrossRefGoogle Scholar
Sadot, O., Rikanati, A., Oron, D., Ben-Dor, G. & Shvarts, D. (2003). Laser Part. Beams 21, 40034009.Google Scholar
Romero, C.A., Harlow, F.H. & Rauenzahn, R.M. (1999). Phys. Fluids 11, 24112424.CrossRefGoogle Scholar
Zhang, Q. & Sohn, S-I. (1997). Phys. Fluids 9, 11061124.CrossRefGoogle Scholar
Zhang, Q. & Graham, M.J. (1998). Phys. Fluids 10, 974992.CrossRefGoogle Scholar
Yosef-Har, A., Sadot, O., Kartoon, D., Oron, D., Levin, L.A., Sarid, E., Elbas, Y., Ben-Dor, G., Shvarts, D. (2003). Laser Part. Beams 21, 40034009.Google Scholar