Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T00:29:19.375Z Has data issue: false hasContentIssue false

Plasma model of microwave background and primordial elements: an alternative to the big bang

Published online by Cambridge University Press:  09 March 2009

Eric J. Lerner
Affiliation:
Lawrenceville Plasma Physics, 20 Pine Knoll Drive, Lawrenceville, NJ 08648

Abstract

A plasma model of the origin of the light elements and the microwave background is presented. In contrast to the conventional Big Bang hypothesis, the model assumes that helium, deuterium and the microwave background were all generated by massive stars in the early stages of galaxy formation. The microwave background is scattered and isotropized by multi-GeV electrons trapped in the jets emitted by active galactic nuclei. The model produces reasonable amounts of heavy elements, accurately predicts the gamma-ray background intensity and spectrum, and explains the statistics of quasars, compact and extended radio sources.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adouze, J. & Tinsley, B. M. 1976 Ann. Rev. Ast. and Astrophys., 14, 43.CrossRefGoogle Scholar
Aitken, D. K. et al. 1986 Mon. Not R. Ast. Soc., 218, 363.Google Scholar
Allen, D. A. & Roche, P. F. 1985 Mon. Not. R. Ast. Soc., 213, 67p.CrossRefGoogle Scholar
Arnett, W. D. 1978 Ap. J., 219, 1008.CrossRefGoogle Scholar
Banhatti, D. G. 1987 Mon. Not. R. Ast. Soc., 225, 487.Google Scholar
Beck, R. 1986 IEEE Trans. Plasma Sci., PS-14, 740.CrossRefGoogle Scholar
Collins, C. A. et al. 1986 Nature, 320, 506.Google Scholar
Davis, R. 1986 Seventh Workshop on Grand Unification, ICOBAN'86, in press.Google Scholar
Einasto, J. et al. 1980, Mon. Not. R. Astr. Soc., 193, 353.Google Scholar
Ezer, D. & Cameron, A. G. W. 1971 Astrophys and Space Sci., 14, 399.CrossRefGoogle Scholar
Fanti, R. & Perola, G. C. 1977 Radio Astronomy and Cosmology, (ed. Jaunen, D. L.), 171.Google Scholar
Ferland, G. J. 1986 Ap. J., 310, 167.CrossRefGoogle Scholar
Helou, G. et al. 1985, Ap. J. 298, L-7.Google Scholar
Johnson, D. G. & Wilkinson, D. T. 1987 Ap. J., 313, L-l.CrossRefGoogle Scholar
Kapahi, V. V. 1977 in Radio Astronomy and Cosmology, (ed. Jaunen, D. L.), 119.Google Scholar
Landau, R. et al. 1986 Ap. J., 308, 78.Google Scholar
Lequex, J. et al. 1979, Ast. Astrophys., 80, 155.Google Scholar
Lerner, E. J. 1986a IEEE Trans. Plasma Sci., PS-14, 690.Google Scholar
Lerner, E. J. 1986b Laser and Particle Beams, 4, 193.Google Scholar
Mazets, E. P. et al. 1975 Astrophys. and Spac Sci., 33, 347.Google Scholar
Maeder, A. 1983 Proc. ESO Workshop on Primordial Helium, 89.Google Scholar
Peacock, J. A. 1985 Mon. Not. R. Astr. Soc., 217, 601.Google Scholar
Peacock, J. A. et al. 1986 Mon. Not. R. Astr. Soc., 218, 265.Google Scholar
Peratt, A. L. 1986a IEEE Trans. Plasma Sci., PS-14, 639.Google Scholar
Peratt, A. L. 1986b IEEE Trans. Plasma Sci., PS-14, 763.Google Scholar
Perley, R. A. et al. 1984, Ap. J., 285, L35.Google Scholar
Phillips, S.Astrophysical Lett, 1986 25, 19.Google Scholar
Rees, M. J. 1978 Nature, 275, 35.Google Scholar
Rudnick, L. et al. 1984 Astronomical Journal, 89, 753.Google Scholar
Schonfelder, V. 1983 Adv. Space Res., 3, 59.CrossRefGoogle Scholar
Shaver, P. A. 1987 Nature, 326, 773.Google Scholar
Steigman, G. 1985 Nuclear Phys., B252, 11.CrossRefGoogle Scholar
Tully, R. B. 1986 Ap. J., 303, 25.CrossRefGoogle Scholar
Tyson, J. A. et al. 1984, Ap. J., 281, L59.Google Scholar
Valtonen, M. J. & Byrd, G. G. 1986 Ap. J., 303, 523.CrossRefGoogle Scholar
Vidal-Madjar, A. & Gry, C. 1984 Astron. Astrophys., 138, 285.Google Scholar
Wilkinson, D. T. 1986 Science, 232, 1517.Google Scholar
Yusef-Zadeh, F. et al. 1984, Nature, 310, 557.Google Scholar