Experiments have been performed to investigate the transport and stability of microsecond-pulselength intense relativistic electron beams in the ‘ion-focused regime’ (IFR) in low-pressure neutral gas and laser-preionized channels. Beams have been generated by the Michigan Electron Long Beam Accelerator (MELBA) which operates with parameters: voltage = −0·7 to −1 MV electrically compensated for collapsing diode impedance over the first 1·5 μs, pulselength = 0·1 to 4μs limited by diode closure, and current = 0·2 to 30 kA.
Long pulse beam propagation experiments have demonstrated the following effects:
1) At pressures of 1–230 m Torr in air and helium with no laser-preionized channel:
a) the electron-beam transport efficiency peaks after times longer than the time calculated for beam-induced ionization to reach fe. = 1. Up to 100% efficient transport occurs during short spikes over a 1 m propagation distance.
b) Within 100 ns of efficient transport the propagated beam exhibits rapid beam cutoff in air and helium. This initial pulse of propagated current is followed by a series of 10 ns to 60 ns duration spikes for the remainder of the injected beam pulse. At higher gas pressures usually less current is propagated in the later peaks. At the lowest pressure for which significant current is propagated (7·6 m Torr air, 14 m Torr helium) the maximum transported current occurs in one of the later peaks.
2) In initial experiments with excimer-laser-ionized channels in diethylaniline at pressures of 3–8 × 10−4 Torr the electron-beam transport over 1·2 m is efficient (80% to 100%) for at least the first 0·5 μs and does not exhibit the erratic transport observed in the electron-beam induced channels. For fixed laser energy, a narrow pressure window exists for efficient and stable long pulse electron-beam transport. Pressures below optimal give inefficient transport while higher pressures cause ejection of the beam from the ionized channel at later times.