Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T18:03:47.541Z Has data issue: false hasContentIssue false

Characteristics of amplified spectrum of a weak frequency-detuned signal in a Brillouin amplifier

Published online by Cambridge University Press:  24 June 2009

W. Gao
Affiliation:
Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, China Department of optics information science and technology, Harbin University of Science and Technology, Harbin, China
Z.W. Lu*
Affiliation:
Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, China
W.M. He
Affiliation:
Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, China
Y.K. Dong
Affiliation:
Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, China
W.L.J. Hasi
Affiliation:
Institute of Opto-Electronics, Harbin Institute of Technology, Harbin, China
*
Address correspondence and reprint requests to: Zhiwei Lu, Institute of Opto-Electronics, Harbin Institute of Technology, P. O. Box 3031. Harbin 150080, China. E-mail: zw_lu@sohu.com

Abstract

We will theoretically and experimentally study the effect of the linewidth and the frequency of a weak detuned signal on its amplified spectrum in the Brillouin amplifier. We will show that the spectral profile of the input signal is preserved during amplification only when the signal linewidth is much narrower than the Brillouin linewidth of the amplifier. If the signal linewidth is near or above the Brillouin linewidth, the frequency shift of the amplified signal with respect to the pump will be close to the Brillouin shift of the amplifier, and will be independent of the frequency shift of the input signal.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bel'dyugin, I.M., Efimkov, V.F., Mikhailov, S.I. & Zubarev, I.G. (2005). Amplification of weak stokes signals in the transient regime of stimulated Brillouin scattering. J. Russian Laser Res. 26, 112.CrossRefGoogle Scholar
Erokhin, A.I., Kovalev, V.I. & Faizullov, F.S. (1986). Determination of the parameters of a nonlinear of liquids in an acoustic resonance region by the method of nondegenerate four-wave interaction. Sov. J. Quan. Electron. 16, 872877.CrossRefGoogle Scholar
Gao, W., Lu, Z.W., He, W.M., Zhu, C.Y. & Dong, Y.K. (2008 a). Spectrum evolution of spontaneous and pump-depleted stimulated Brillouin scattering in liquid media. Chinese Phys. B. 17, 37653770.Google Scholar
Gao, W., Lu, Z.W., He, W.M., Hasi, W.L.J. & Zhang, Z. (2008 b). High-gain amplification of weak Stokes signal of stimulated Brillouin scattering in water. Acta Phys. sin. (in Chinese) 57, 22482252.CrossRefGoogle Scholar
Glick, Y. & Sternklar, S. (1995). 1010 amplification and phase conjugation with high efficiency achieved by overcoming noise limitations in Brillouin two-beam coupling. J. Opt. Soc. Am. B. 12, 10741082.CrossRefGoogle Scholar
Hasi, W.L.J., Gong, S., Lu, Z.W., Lin, D.Y., He, W.M. & Fan, R.Q. (2008). Generation of flat-top waveform in the time domain based on stimulated Brillouin scattering using medium with short phonon lifetime. Laser Part. Beams 26, 511516.CrossRefGoogle Scholar
Hasi, W.L.J., Lu, Z.W., Li, Q. & He, W.M. (2007). Research on the enhancement of power-load of two-cell SBS system by choosing different media or mixture medium. Laser Part. Beams 25, 207210.CrossRefGoogle Scholar
Herráez, M.G., Song, K.Y. & Thévenaz, L. (2006). A rbitrary-bandwidth Brillouin slow light in optical fibers. Opt. Express 14, 13951400.CrossRefGoogle Scholar
Jones, D.C., Scott, A.M. & Stewart, I. (1995). Response of a Brillouin amplifier and four-wave mixing mirror to a spectrally broadened signal beam. Opt. Lett. 20, 692694.CrossRefGoogle ScholarPubMed
Kong, H.J., Yoon, J.W., Beak, D.H., Shin, J.S., Lee, S.K. & Lee, D.W. (2007). Laser fusion driver using stimulated Brillouin scattering phase conjugate mirrors by a self-density modulation. Laser Part. Beams 25, 225238.CrossRefGoogle Scholar
Kong, H.J., Shin, J.S., Yoon, J.W. & Beak, D.H. (2009). Phase stabilization of the amplitude dividing four-beam combined laser system using stimulated Brillouin scattering phase conjugate mirrors. Laser Part. Beams 27, 179184.CrossRefGoogle Scholar
Meister, S., Riesbeck, T. & Eichler, H.J. (2007). Glass fibers for stimulated Brillouin scattering and phase conjugation. Laser Part. Beams 25, 1521.CrossRefGoogle Scholar
Nikles, M., Thevenaz, L. & Robert, P.A. (1997). Brillouin gain spectrum characterization in single-mode optical fibers. J. lightwave tech. 15, 18421851.CrossRefGoogle Scholar
Ostermeyer, M., Kong, H.J., Kovalev, V.I., Harrison, R.G., Fotiadi, A.A., Megret, P., Kalal, M., Slezak, O., Yoon, J.W., Shin, J.S., Beak, D.H., Lee, S.K., Lu, Z., Wang, S., Lin, D., Knight, J.C., Kotova, N.E., Straber, A., Scheikhobeid, A., Riesbeck, T., Meister, S., Eichler, H.J., Wang, Y., He, W., Yoshida, H., Fujita, H., Nakatsuka, M., Hatae, T., Park, H., Lim, C., Omatsu, T., Nawata, K., Shiba, N., Antipov, O.L., Kuznetsov, M.S. & Zakharov, N.G. (2008). Trends in stimulated Brillouin scattering and optical phase conjugation. Laser Part. Beams 26, 297362.CrossRefGoogle Scholar
Shi, J., Ouyang, M., Gong, W., Bai, J., Li, S. & Liu, D. (2008). A Brillouin lidar system using F–P etalon and ICCD for remote sensing of the ocean. Appl. Phys. B. 90, 569571.CrossRefGoogle Scholar
Wang, S., Lu, Z., Lin, D., Ding, L. & Jiang, D. (2007). Investigation of serial coherent laser beam combination Based on Brillouin amplification. Laser Part. Beams 25, 7983.CrossRefGoogle Scholar
Yoshida, H., Fujita, H., Nakatsuka, M., Ueda, T. & Fujinoki, A. (2007). Temporal compression by stimulated Brillouin scattering of Q-switched pulse with fused-quartz and fused-silica glass from 1064 nm to 266 nm wavelength. Laser Part. Beams 25, 481488.CrossRefGoogle Scholar
Yoshida, H., Kmetik, V., Fujita, H., Nakatsuka, M., Yamanaka, T. & Yoshida, K. (1997). Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror. Appl. Opt. 36, 37393744.CrossRefGoogle ScholarPubMed
Zhu, Z.M. & Gauthier, D.J. (2005). Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber. J. Opt. Soc. Am. B 22, 23782384.CrossRefGoogle Scholar