Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T13:20:19.090Z Has data issue: false hasContentIssue false

Collimation of hot electron beams by external field from magnetic-flux compression

Published online by Cambridge University Press:  20 August 2013

Yuqiu Gu*
Affiliation:
Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, China
Jinqing Yu
Affiliation:
Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, China Vacuum Electronics National Laboratory, University of Electronic Science and Technology of China, Chengdu, China
Weimin Zhou
Affiliation:
Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, China
Fengjuan Wu
Affiliation:
Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, China
Jian Wang
Affiliation:
Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, China
Hongjie Liu
Affiliation:
Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, China
Leifeng Cao
Affiliation:
Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, China
Baohan Zhang
Affiliation:
Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, China
*
Address correspondence and reprint requests to: Yu-Qiu Gu, Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900China. E-mail: yqgu@caep.ac.cn

Abstract

In fast ignition of inertial confinement fusion, hot electron beam is considered to be an appropriate energy source for ignition. However, hot electrons are divergent as they are transporting in over-dense plasma. So collimating the hot electrons becomes one of the most important issues in fast ignition. A method to collimate hot electron beam by external magnetic field is proposed in this paper. The external field can be generated by compressing a seed magnetic field at the stage of laser-driven implosion. This method is confirmed by particle-in-cell simulations. The results show that hot electrons are well collimated by external magnetic field from magnetic-flux compression.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cai, H.B., Mima, K., Zhou, W.M., Jozaki, T., Nagatomo, H., Sunahara, A. & Mason, R.J. (2009). Enhancing the number of high-energy electrons deposited to a compressed pellet via double cones in fast ignition. Phys. Rev. Lett. 102, 245001.CrossRefGoogle ScholarPubMed
Chen, M., Pukhov, A., Yu, T.P. & Sheng, Z.M. (2009). Enhanced collimated GeV monoenergetic ion acceleration from a shaped foil target irradiated by a circularly polarized laser pulse. Phys. Rev. Lett. 103, 024801.CrossRefGoogle ScholarPubMed
Galloudec, N., Renard-Le, D'humieres, E., Cho, B.I., Osterholz, J., Sentoku, Y. & Dit Mire, T. (2009). Phys. Rev. Lett. 102, 205003.Google Scholar
Gotchev, O.V., Chang, P.Y., Knauer, J.P., Meyerhofer, D.D., Polomarov, O., Frenje, J., Li, C.K., Manuel, M.J-E., Petrasso, R.D., Rygg, J.R., Séguin, F.H. & Betti, R. (2009). Laser-driven magnetic-flux compression in high-energy-density plasmas. Phys. Rev. Lett. 103, 215004.CrossRefGoogle ScholarPubMed
Green, J.S., Ovchinnikov, V.M., Evans, R.G., Akli, K.U., Azechi, H., Beg, F.N., Bellei, C., Freeman, R.R., Habara, H., Heathcote, R., Key, M.H., King, J.A., Lancaster, K.L., Lopes, N.C., Ma, T., Mackinnon, A.J., Markey, K., Mcphee, A., Najmudin, Z., Nilson, P., Onofrei, R., Stephens, R., Takeda, K., Tanaka, K.A., Theobald, W., Tanimoto, T., Waugh, J., Van Woerkom, L., Woolsey, N.C., Zepf, M., Davies, J.R. & Norreys, P.A. (2008). Effect of laser intensity on fast-electron-beam divergence in solid-density plasmas. Phys. Rev. Lett. 100, 015003.Google ScholarPubMed
King, J.A., Akli, K.U., Freeman, R.R., Green, J., Hatchett, S.P., Hey, D., Jamangi, P., Key, M.H., Koch, J., Lancaster, K.L., Ma, T., Mackinnon, A.J., Macphee, A., Norreys, P.A., Patel, P.K., Phillips, T., Stephens, R.B., Theobald, W., Town, R.J.P., Van Woerkom, L., Zhang, B. & Beg, F.N. (2009). Studies on the transport of high intensity laser-generated hot electrons in cone coupled wire targets. Phys. Plasmas 16, 020701.CrossRefGoogle Scholar
Knauer, J.P., Gotchev, O.V., Chang, P.Y., Meyerhofer, D.D., Polomarov, O., Betti, R., Frenje, J.A., Li, C.K., Manuel, M.J –E., Petrasso, R.D., Rygg, J.R. & SÉguin, F.H. (2010). Compressing magnetic fields with high-energy lasers. Phys. Plasmas 17, 056318.CrossRefGoogle Scholar
Kodama, R., Norreys, P.A., Mima, K., Dangor, A.E., Evans, R.G., Fujita, H., Kitagawa, Y., Krushelnick, K., Miyakoshi, T., Miyanaga, N., Norimatsu, T., Rose, S.J., Shozaki, T., Shigemori, K., Sunahara, A., Tampo, M., Tanaka, K.A., Toyama, Y., Yamanaka, T. & Zepf, M. (2001). Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature 412, 798.CrossRefGoogle ScholarPubMed
Li, C.K, Séguin, F.H., Frenje, J.A., Rygg, J.R., Petrasso, R.D., Town, R.P.J., Amendt, P.A., Hatchett, S.P., Landen, O.L., Mackinnon, A.J., Patel, P.K., Smalyuk, V.A., Sangster, T.C. & Knauer, J.P. (2006). Measuring E and B fields in laser-produced plasmas with monoenergetic proton radiography. Phys. Rev. Lett. 97, 135003.CrossRefGoogle Scholar
Li, C.K., Séguin, F.H., Frenje, J.A., Petrass, R.D., Amendt, P.A., Town, R.P.J., Landen, O.L., Rygg, J.R., Betti, R., Knauer, J.P., Meyerhofer, D.D., Soures, J.M., Back, C.A., Kilkenny, J.D. & Nikroo, A. (2009). Observations of electromagnetic fields and plasma flow in hohlraums with proton radiography. Phys. Rev. Lett. 102, 205001.CrossRefGoogle ScholarPubMed
Liu, H.J., Gu, Y.Q., Wang, H.B., Zheng, Z.J., Ge, F.F., Wen, X.L., Jiao, C.Y., He, Y.L., Wen, T.S., Huang, W.Z., Wang, G.C., Zhou, W.M., Zhang, S.G., Wang, X.X., Zhou, K.N., Wang, X.D., Huang, X.J. & Ni, G.Q. (2005). High-energy ion emission from cooled deuterium clusters in 20 TW laser fields. Chin. Phys. Lett. 22, 1174.Google Scholar
Malka, V., Fritzler, S., Lefebvre, E., D'Humieres, E., Ferrand, R., Grillon, G., Albaret, C., Meyroneinc, S., Chambaret, J., Antonetti, A. & Hulin, D. (2004). Practicability of proton therapy using compact laser systems. Med. Phys. 31, 1587.CrossRefGoogle ScholarPubMed
Marshall, F.J., Mckenty, P.W., Delettrez, J.A., Epstein, R., Knauer, J.P., Smalyuk, V.A., Frenje, J.A., Li, C.K., Petrasso, R.D., Séguin, F.H. & Mancini, R.C. (2009). Plasma-density determination from X-ray radiography of laser-driven spherical implosions. Phys. Rev. Lett. 102, 185004.CrossRefGoogle ScholarPubMed
Radha, P.B., Goncharov, V.N., Collins, T.J.B., Delettrez, J.A., Elbaz, Y., Glebov, V.YU., Keck, R.L., Keller, D.E., Knauer, J.P., Marozas, J.A., Marshall, F.J., Mckenty, P.W., Meyerhofer, D.D., Regan, S.P., Sangster, T.C., Shvarts, D., Skupsky, S., Srebro, Y., Town, R.P.J. & Stoeckl, C. (2005). Two-dimensional simulations of plastic-shell, direct-drive implosions on OMEGA. Phys. Plasmas 12, 032702.Google Scholar
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436.CrossRefGoogle ScholarPubMed
Stephens, R.B., Snavely, R.A., Aglitskiy, Y., Amiranoff, F., Andersen, C., Batani, D., Baton, S.D., Cowan, T., Freeman, R.R., Hall, T., Hatchett, S.P., Hill, J.M., Key, M.H., King, J.A., Koch, J.A., Koenig, M., Mackinnon, A.J., Lancaster, K.L., Martinolli, E., Norreys, P., Perelli-Cippo, E., Rabec Le Gloahec, M., Rousseaux, C., Santos, J.J. & Scianitti, F. (2004). K α fluorescence measurement of relativistic electron transport in the context of fast ignition. Phys. Rev. E 69, 066414.CrossRefGoogle ScholarPubMed
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 1626.CrossRefGoogle Scholar
Teng, J., Zhao, Z.Q., Zhu, B., Hong, W., Cao, L.F., Zhou, W.M., Shan, L.Q. & Gu, Y.Q. (2011). Time-resolved radiography using chirp-pulse proton beams. Chin. Phys. Lett. 28, 035203.CrossRefGoogle Scholar
Williams, G.O., Favre, S. & O'Connor, G.M. (2009). Directional ion emission from thin films under femtosecond laser irradiation. Appl. Phys. Lett. 94, 101503.CrossRefGoogle Scholar
Wu, S.Z., Liu, Z.J., Zhou, C.T. & Zhu, S.P. (2009). Density effects on collimation of energetic electron beams driven by two intense laser pulses. Phys. Plasmas 16, 043106.CrossRefGoogle Scholar
Zhou, C.T., He, X.T. & Yu, M.Y. (2008). Laser-produced energetic electron transport in overdense plasmas by wire guiding. Appl. Phys. Lett. 92, 151502.CrossRefGoogle Scholar
Zhou, C.T., Wang, X.G., Ruan, S.C., Wu, S.Z., Chew, L.Y., Yu, Y.M. & He, X.T. (2010). Dynamics of relativistic electrons propagating in a funnel-guided target. Phys. Plasmas 17, 083103.CrossRefGoogle Scholar
Zhou, W.M., Mima, K., Nakamura, T. & Nagtomo, H. (2008). Probing of nonlinear evolution of laser wake field by Raman scattering of laser light. Phys. Plasmas. 15, 093107.CrossRefGoogle Scholar
Zhou, W.M., Gu, Y.Q., Hong, W., Cao, L.F., Zhao, Z.Q., Ding, Y.K., Zhang, B.H., Cai, H.B. & Mima, K. (2010). Enhancement of monoenergetic proton beams via cone substrate in high intensity laser pulse-double layer target interactions. Laser and Part. Beams 28, 585.CrossRefGoogle Scholar