Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T16:47:13.508Z Has data issue: false hasContentIssue false

Collisional effects on the relativistic current-filamentation instability in dense plasmas

Published online by Cambridge University Press:  13 November 2013

B. Hao
Affiliation:
Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
Z.M. Sheng*
Affiliation:
Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
J. Zhang
Affiliation:
Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
Y.T. Li
Affiliation:
Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
*
Address correspondence and reprint request to: Z.M. Sheng, Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China. E-mail: zmsheng@sjtu.edu.cn

Abstract

Collisional effects on the current-filamentation instability (CFI), accounting for the space charge effect (SCE), are investigated kinetically for a relativistic beam propagating in dense plasmas. It is shown that collisions can completely suppress the SCE in low temperature dense plasma, leading to enhancement of the CFI. This kind of decoupling mechanism is quite different from the well-known resistive mechanism [Molvig (1975). Phys. Rev. Lett. 35, 1504]. In particular, we find the present decoupling mechanism can well explain the recent numerical simulation results [Karmakar et al. (2008). Phys. Rev. Lett. doi: 101, 255001]. In the parameter regime related to the laser-solid interaction and fast ignition scenario (FIS), the CFI growth rate with SCE included is enhanced in the low plasma density region through the decoupling mechanism. In the high plasma density region, it is enhanced mainly through the resistive mechanism.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baton, S.D., Batani, D., Manclossi, M., Morace, A., Piazza, D., Benuzzi-Mounaix, A., Koenig, M., Guillou, P., Loupias, B., Fuchs, J., Amiranoff, F., Gloahec, M.R.L., Popescu, H., Rousseaux, C., Borhesi, M., Cecchetti, C., Kodama, R., Norimatsu, T., Nakatsutsumi, M. & Aglitskiy, Y. (2005). Recent experiments on electron transport in high-intensity laser matter interaction. Plasma Phys. Contr. Fusion 47, B777B790.CrossRefGoogle Scholar
Bell, A.R., Davies, J.R., Guerin, S. & Ruhl, H. (1997). Fast-electron transport in high-intensity short-pulse laser-solid experiments. Plasma Phys. Contr. Fusion 39, 653660.Google Scholar
Bhatnagar, P.L., Gross, E.P. & Krook, M. (1954). A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511525.Google Scholar
Bludman, S.A., Watson, K.M. & Rosenbluth, M.N. (1960). Statistical mechanics of relativistic streams. II. Phys. Fluids 3, 747757.Google Scholar
Breizman, B.N. & Ryutov, D.D. (1974). Powerful relativistic electron beams in a plasma and in a vacuum. Nucl. Fusion 14, 873907.Google Scholar
Bret, A., Firpo, M.C. & Deutsch, C. (2005). Electromagnetic instabilities for relativistic beam-plasma interaction in whole k space: Nonrelativistic beam and plasma temperature effects. Phys. Rev. E 72, 016403.Google Scholar
Bret, A., Firpo, M.-C. & Deutsch, C. (2006). Between two stream and filamentation instabilities: Temperature and collisions effects. Laser Part. Beams 24, 2733.Google Scholar
Bret, A., Gremillet, L. & Dellido, J.C. (2007). How really transverse is the filamentation instability? Phys. Plasmas 14, 032103.Google Scholar
Bret, A., Gremillet, L., Benisti, D. & Lefebvre, E. (2008). Exact relativistic kinetic theory of an electron-beam-plasma system: hierarchy of the competing modes in the system-parameter space. Phys. Rev. Lett. 100, 205008.CrossRefGoogle ScholarPubMed
Bret, A., Fernandez, F.J.M. & Anfray, J.M. (2009). Unstable spectrum of a relativistic electron beam interacting with a quantum collisional plasma: application to the fast ignition scenario. Plasma Phys. Contr. Fusion 51, 075011.CrossRefGoogle Scholar
Bret, A. (2010). Collisional and collisionless beam plasma instabilities. Laser Part. Beams 28, 491495.CrossRefGoogle Scholar
Califano, F., Pegoraro, F., Bulanov, S.V. & Mangeney, A. (1998). Kinetic saturation of the Weibel instability in a collisionless plasma. Phys. Rev. E 57, 70487059.Google Scholar
Chrisman, B., Sentoku, Y. & Kemp, J. (2008). Intensity scaling of hot electron energy coupling in cone-guided fast ignition. Phys. Plasmas 15, 056309.CrossRefGoogle Scholar
Cottrill, L.A., Langdon, A.B., Lansinki, B.F., Lund, S.M., Molvig, K., Tabak, M., Town, R.P.J. & Williams, E.A. (2008). Kinetic and collisional effects on the linear evolution of fast ignition relevant beam instabilities. Phys. Plasmas 15, 082108.Google Scholar
Deutsch, C. & Didelez, J.-P. (2011). Inertial confinement fusion fast ignition with ultra-relativistic electron beams. Laser Part. Beams 29, 3944.Google Scholar
Duclousa, R., Morreeuw, J.P., Tikhonchuk, V.T. & Dubroca, B. (2008). Reduced multi-scale kinetic models for the relativistic electron transport in solid targets: Effects related to secondary electrons. Laser Part. Beams 28, 165177.Google Scholar
Fonseca, R.A. & Silva, L.O. (2003). Three-dimensional Weibel instability in astrophysical scenarios. Phys. Plasmas 10, 19791984.Google Scholar
Fried, B.D., Hedrick, C.L. & McCune, J. (1968). Two-pole approximation for the plasma dispersion function. Phys. Fluids 11, 249252.CrossRefGoogle Scholar
Gremillet, L., Bonnaud, G. & Amiranoff, F. (2002). Filamented transport of laser-generated relativistic electrons penetrating a solid target. Phys. Plasmas 9, 941948.Google Scholar
Hao, B., Sheng, Z.M. & Zhang, J. (2008). Kinetic theory on the current-filamentation instability in collisional plasmas. Phys. Plasmas 15, 082112.CrossRefGoogle Scholar
Hao, B., Sheng, Z.M., Ren, C. & Zhang, J. (2009 a). Relativistic collisional current-filamentation instability and two-stream instability in dense plasma. Phys. Rev. E 79, 046409.Google Scholar
Hao, B., Ding, W.J., Sheng, Z.M., Ren, C. & Zhang, J. (2009 b). Plasma thermal effect on the relativistic current-filamentation and two-stream instabilities in a hot-beam warm-plasma system. Phys. Rev. E 80, 066402.CrossRefGoogle Scholar
Hao, B., Ding, W.J., Sheng, Z.M., Ren, C., Kong, X., Mu, J. & Zhang, J. (2012). Collisional effects on the oblique instability in relativistic beam-plasma interactions. Phys. Plasmas 19, 072709.Google Scholar
Hill, J.M., Key, M.H., Hatchett, S.P. & Freeman, R.R. (2005). Beam-Weibel filamentation instability in near-term and fast-ignition experiments. Phys. Plasmas 12, 082304.Google Scholar
Honda, M., Meyer-ter-Vehn, J. & Pukhov, A. (2000). Collective stopping and ion heating in relativistic-electron-beam transport for fast ignition. Phys. Rev. Lett. 85, 21282131.Google Scholar
Honda, M. (2004). Eigenmodes and growth rates of relativistic current filamentation instability in a collisional plasma. Phys. Rev. E 69, 016401.Google Scholar
Honrubia, J.J. & Meyer-ter-Vehn, J. (2008). Fast ignition of fusion targets by laser-driven electrons. Plasma Phys. Contr. Fusion 51, 014008.Google Scholar
Jung, R., Osterholz, J., Lowenbruck, K., Kiselev, S., Pretzler, G., Pukhov, A., Willi, O., Kar, S., Borghesi, M., Nazarov, W., Karsch, S., Claeke, R. & Neely, D. (2009). Study of electron-beam propagation through preionized dense foam plasmas. Phys. Rev. Lett. 94, 195001.Google Scholar
Karmakar, A., Kumar, N., Shvets, G., Polomarov, O. & Pukhov, A. (2008). Collision-driven negative-energy waves and the Weibel instability of a relativistic electron beam in a quasineutral plasma. Phys. Rev. Lett. 101, 255001.CrossRefGoogle Scholar
Kodama, R., Norreys, P.A., Mima, K., Dangor, A.E., Evans, R.G., Fujita, H., Kitagawa, Y., Krushelnick, K., Miyakoshi, T., Miyanaga, N., Norimatsu, T., Rose, S.J., Shozaki, T., Shigemori, K., Sunahara, A., Tampo, M., Tanakaka, K.A., Toyama, Y., Yamanaka, T. & Zepf, M. (2001). Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature 412, 798802.Google Scholar
Kong, X., Park, J., Ren, C., Sheng, Z.M. & Tong, J.W. (2009). Evolution of a relativistic electron beam-plasma return current system. Phys. Plasmas 16, 032107.Google Scholar
Lalousis, P., Foldes, I.B. & Hora, H. (2012). Ultrahigh acceleration of plasma by picosecond terawatt laser pulses for fast ignition of fusion. Laser Part. Beams 30, 233242.CrossRefGoogle Scholar
Lee, H. & Thode, L.E. (1983). Electromagnetic two-stream and filamentation instabilities for a relativistic beam-plasma system. Phys. Fluids 26, 27072716.Google Scholar
Li, Y.T., Li, C., Zhou, M.L., Wang, W.M., Du, F., Ding, W.J., Lin, X.X., Liu, F., Sheng, Z.M., Peng, X.Y., Chen, L.M., Ma, J.L., Lu, X., Wang, Z.H., Wei, Z.Y. & Zhang, J. (2012). Strong terahertz radiation from relativistic laser interaction with solid density plasmas. Appl. Phys. Lett. 100, 254101.CrossRefGoogle Scholar
Lin, X.X., Li, Y.T., Liu, B.C., Liu, F., Du, F., Wang, S.J., Chen, L.M., Zhang, L., Liu, X., Liu, X.L., Wang, Z.H., Ma, J.L., Lu, X., Dong, Q.L., Wang, W.M., Sheng, Z.M., Wei, Z.Y. & Zhang, J. (2012). Directional transport of fast electrons at the front target surface irradiated by intense femtosecond laser pulses with preformed plasma. Laser Part. Beams 30, 3943.Google Scholar
Martin, P., Donoso, G. & Cristi, J.Z. (1980). A modified asymptotic Pad method. Application to multipole approximation for the plasma dispersion function Z. J. Math. Phys. 21, 280285.Google Scholar
Medvedev, M.V. & Loeb, A. (1999). Generation of magnetic fields in the relativistic shock of gamma-ray burst sources. Astrophys. J. 526, 697706.CrossRefGoogle Scholar
Meyer-ter-Vehn, J., Honrubia, J., Geissler, M., Karsch, S., Krausz, F., Tsakiris, G. & Witte, K. (2005). On electron transport in fast ignition research and the use of few-cycle PW-range laser pulses. Plasma Phys. Contr. Fusion 47, B807B813.Google Scholar
Mondal, S., Narayanan, V., Ding, W.J., Lad, A.D., Hao, B., Ahmad, S., Wang, W.M., Sheng, Z.M., Sengupta, S., Kaw, P.K., Das, A. & Kumar, G.R. (2012). Direct observation of turbulent magnetic fields in hot, dense laser produced plasmas. Proc. Nat. Acad. Sci. 109, 80118015.Google Scholar
Molvig, K. (1975). Filamentary instability of a relativistic electron beam. Phys. Rev. Lett. 35, 15041507.Google Scholar
Okada, T. & Niu, K. (1980). Effect of collisions on the relativistic electromagnetic instability. J. Plasma Phys. 24, 483488.CrossRefGoogle Scholar
Pegoraro, F., Bulanov, S.V., Califano, F. & Lontano, M. (1996). Nonlinear development of the weibel instability and magnetic field generation in collisionless plasmas. Phys. Scr. T63, 262265.Google Scholar
Pukhov, A. & Meyer-ter-Vehn, J. (1997). Laser hole boring into overdense plasma and relativistic electron currents for fast ignition of ICF targets. Phys. Rev. Lett. 79, 26862689.CrossRefGoogle Scholar
Roth, M., Brambrink, E., Audebert, P., Blazevic, A., Clarke, R., Cobble, J., Cowan, T.E., Fernandez, J., Fuchs, J., Geissel, M., Habs, D., Hegelich, M., Karsch, S., Ledingham, K., Neely, D., Ruhl, H., Schlegel, T. & Schreiber, J. (2005). Laser accelerated ions and electron transport in ultra-intense laser matter interaction. Laser Part. Beams 23, 95100.CrossRefGoogle Scholar
Sakagami, H., Okada, K., Kaseda, Y., Taguchi, T. & Johzaki, T. (2012). Collisional effects on fast electron generation and transport in fast ignition. Laser Part. Beams 30, 243248.CrossRefGoogle Scholar
Sentoku, Y., Mima, K., Kojima, S. & Ruhl, H. (2000). Magnetic instability by the relativistic laser pulses in overdense plasmas. Phys. Plasmas 7, 689695.Google Scholar
Sentoku, Y., Mima, K., Kaw, P. & Nishikawa, K. (2003). Anomalous resistivity resulting from MeV-electron transport in overdense plasma. Phys. Rev. Lett. 90, 155001.Google Scholar
Silva, L.O., Fonseca, R.A., Tonge, J.W., Mori, W.B. & Dawson, J.M. (2002). On the role of the purely transverse Weibel instability in fast ignitor scenarios. Phys. Plasmas 9, 24582461.CrossRefGoogle Scholar
Startsev, E.A., Davidson, R.C. & Qin, H. (2002). Nonlinear delta-f simulation studies of intense charged particle beams with large temperature anisotropy. Laser Part. Beams 20, 585588.Google Scholar
Stockem, A., Dieckmann, M.E. & Schlickeiser, R. (2009). PIC simulations of the thermal anisotropy-driven Weibel instability: field growth and phase space evolution upon saturation. Plasma Phys. Contr. Fusion 51, 075014.Google Scholar
Storm, M., Solodov, A.A., Myatt, J.F., Meyerhofer, D.D., Stoeckl, C., Mileham, C., Betti, R., Nilson, P.M., Sangster, T.C., Theobald, W. & Guo, C. (2009). High-current, relativistic electron-beam transport in metals and the role of magnetic collimation. Phys. Rev. Lett. 102, 235004.CrossRefGoogle ScholarPubMed
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Takabe, H., Kato, T.N., Sakawa, Y., Kuramitsu, Y., Morita, T., Kadono, T., Shigemori, K., Otani, K., Nagatomo, H., Norimatsu, T., Dono, S., Endo, T., Miyanishi, K., Kimura, T., Shiroshita, A., Ozaki, N., Kodama, R., Fujioka, S., Nishimura, H., Salzman, D., Loupias, B., Gregory, C., Koenig, M., Waugh, J.N., Woolsey, N.C., Kato, D., Li, Y.T., Dong, Q.L., Wang, S.J., Zhang, Y., Zhao, J., Wang, F.L., Wei, H.F., Shi, J.R., Zhao, G., Zhang, J.Y., Wen, T.S., Zhang, W.H., Hu, X., Liu, S.Y., Ding, Y.K., Zhang, L., Tang, Y.J., Zhang, B.H., Zheng, Z.J., Sheng, Z.M. & Zhang, J. (2008). High-Mach number collisionless shock and photo-ionized non-LTE plasma for laboratory astrophysics with intense lasers. Plasma Phys. Contr. Fusion 50, 124057.CrossRefGoogle Scholar
Tatarakis, M., Beg, F.N., Clark, E.L., Dangor, A.E., Edwards, R.D., Evans, R.G., Goldsack, T.J., Ledingham, K.W.D., Norreys, P.A., Sinclair, M.A., Wei, M.S., Zepf, M. & Krushelnick, K. (2003). Propagation instabilities of high-intensity laser-produced electron beams. Phys. Rev. Lett. 90, 175001.Google Scholar
Tzoufras, M., Ren, C., Tsung, F.S., Tonge, J.W., Mori, W.B., Fiore, M., Fonseca, R.A. & Silva, L.O. (2006). Space-charge effects in the current-filamentation or Weibel instability. Phys. Rev. Lett. 96, 105002.Google Scholar
Watson, K.M., Bludman, S.A. & Rosenbluth, M.N. (1960). Statistical mechanics of relativistic streams. I. Phys. Fluids 3, 741747.Google Scholar
Weibel, E.S. (1959). Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution. Phys. Rev. Lett. 2, 8384.CrossRefGoogle Scholar
Wright, T.P. & Hadley, G.R. (1975). Relativistic distribution functions and applications to electron beams. Phys. Rev. A 12, 686697.CrossRefGoogle Scholar
Zhou, C.T., Cai, T.X., Zhang, W.Y. & He, X.T. (2012). Effect of plasma material on intense laser-driven beam electrons in solid foils. Laser Part. Beams 30, 111116.Google Scholar