Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T17:41:30.007Z Has data issue: false hasContentIssue false

The diagnostics of density distribution for inhomogeneous dense DT plasmas using fast protons

Published online by Cambridge University Press:  16 June 2008

X.-M. Li*
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, the Chinese Academy of Sciences, Shanghai, China
B.-F. Shen
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, the Chinese Academy of Sciences, Shanghai, China
X.-M. Zhang
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, the Chinese Academy of Sciences, Shanghai, China
Z.-Y. Jin
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, the Chinese Academy of Sciences, Shanghai, China
F.-C. WANG
Affiliation:
State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, the Chinese Academy of Sciences, Shanghai, China
*
Address correspondence and reprint requests to: Xue-Mei Li, State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, the Chinese Academy of Sciences, Shanghai 201800, China. Email: xmlee0102@yahoo.com.cn

Abstract

The density distribution of inhomogeneous dense deuterium-tritium plasmas in laser fusion is revealed by the energy loss of fast protons going through the plasma. In our simulation of a plasma density diagnostics, the fast protons used for the diagnostics may be generated in the laser-plasma interaction. Dividing a two-dimensional area into grids and knowing the initial and final energies of the protons, we can obtain a large linear and ill-posed equation set for the densities of all grids, which is solved with the Tikhonov regularization method. We find that the accuracy of the set plan with four proton sources is better than those of the set plans with less than four proton sources. Also we have done the density reconstruction especially for four proton sources with and without assuming circularly symmetrical density distribution, and find that the accuracy is better for the reconstruction assuming circular symmetry. The error is about 9% when no noise is added to the final energy for the reconstruction of four proton sources assuming circular symmetry. The accuracies for different random noises to final proton energies with four proton sources are also calculated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atzeni, S. & Meyer-ter-vehn, J. (2004). The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter. Oxford: Oxford Science.CrossRefGoogle Scholar
Belyaev, A.G., Basko, M., Sharkov, B., Cherkasov, A. & Fertman, A. (1996). Diagnostics of plasma target for ion beam: target interaction experiments. Fusion Engin. Design 32–33, 557560.Google Scholar
Bloembergen, N. & Heerden, P.J.V. (1951). The range and straggling of protons between 35 and 120 Mev. Phys. Rev 83, 561566.CrossRefGoogle Scholar
Borghesi, M., Schiavi, A., Campbell, D.H., Haines, M.G., Willi, O., MacKinnon, A.J., Gizzi, L.A., Galimberti, M., Clarke, R.J. & Ruhl, H. (2001). Proton imaging: a diagnostic for inertial confinement fusion/fast ignitor studies. Plasma Phys. Contr. Fusion 43, 267276.CrossRefGoogle Scholar
Borghesi, M., Campbell, D.H., Schiavi, A., Haines, M.G., Willi, O., MacKinnon, A.J., Patel, P., Gizzi, L.A., Galimberti, M., Clarke, R.J., Pegoraro, F., Ruhl, H. & Bulanov, S. (2002). Phys. Plasmas 9, 22142220.CrossRefGoogle Scholar
Borghesi, M., Schiavi, A., Campbell, D.H. & Haines, M.G. (2003). Proton imaging detection of transient electromagnetic fields in laser-plasma interactions (invited). Rev. Sci. Instr. 74, 16881693.CrossRefGoogle Scholar
Borghesi, M., Audebert, P., Bulanov, S.V., Cowan, T., Fuchs, J., Gauthier, J.C., MacKinnon, A.J., Patel, P.K., Pretzler, G., Romagnani, L., Schiavi, A., Toncian, T. & Willi, O. (2005). High-intensity laser-plasma interaction studies employing laser-driven proton probes. Laser Part. Beams 23, 291295.CrossRefGoogle Scholar
Borghesi, M., Kar, S., Romagnani, L., Toncian, T., Antici, P., Audebert, P., Brambrink, E., Ceccherini, F., Cecchetti, C.A., Fuchs, J., Galimberti, M., Gizzi, L.A., Grismayer, T., Lyseikina, T., Jung, R., Macchi, A., Mora, P., Osterholtz, J., Schiavi, A. & Willi, O. (2007). Impulsive electric fields driven by high-intensity laser matter interactions. Laser Part. Beams 25, 161167.CrossRefGoogle Scholar
Breschi, E., Borghesi, M., Campbell, D.H., Galimberti, M., Giulietti, D., Gizzi, L.A., Romagnani, L., Schiavi, A. & Willi, O. (2004). Spectral and angular characterization of laser-produced proton beams from dosimetric measurements. Laser Part. Beams 22, 393397.CrossRefGoogle Scholar
Califano, F., Pegoraro, F. & Bulanov, S.V. (2003). Propagation of a short proton beam through a thin plasma slab. Phys. Rev. E 68, 066406.CrossRefGoogle Scholar
Christopher, G.S. (2007). Radiochromic film dosimetry. Rad. Measur. 41, S100S116.Google Scholar
Deutsch, C., Maynard, G., Bimbot, R., Gardes, D., Dellanegra, S., Dumail, M., Kubica, B., Richard, A., Rivet, M.F., Servajean, A., Fleurier, C., Sanba, A., Hoffmann, D.H.H., Weyrich, K. & Wahl, H. (1989). Ion beam-plasma interaction: A standard model approach. Nucl. Instr. & Meth. Phys. Res. A 278, 3843.CrossRefGoogle Scholar
Dong, Q.L., Sheng, Z.M. & Yu, M.Y. (2003). Optimization of ion acceleration in the interaction of intense femtosecond laser pulses with ultrathin foils. Phys. Rev. E 68, 026408.CrossRefGoogle ScholarPubMed
Flippo, K., Hegelich, B.M., Albright, B.J., Yin, L., Gautier, D.C., Letzring, S., Schollmeier, M., Schreiber, J., Schulze, R. & Fernandez, J.C. (2007). Laser-driven ion accelerators: Spectral control, monoenergetic ions and new acceleration mechanisms. Laser Part. Beams 25, 38.CrossRefGoogle Scholar
Golubev, A., Basko, M., Fertman, A., Kozodaev, A., Mesheryakov, N., Sharkov, B., Vishnevskiy, A., Fortov, V., Kulish, M., Gryaznov, V., Mintsev, V., Golubev, E., Pukhov, A., Smirnov, V., Funk, U., Stoewe, S., Stetter, M., Flierl, H.P., Hoffmann, D.H.H., Jacoby, J. & Iosilevski, I. (1998). Dense plasma diagnostics by fast proton beams. Phys. Rev. E 57, 33633367.CrossRefGoogle Scholar
Hegelich, B.M., Albright, B.J., Cobble, J., Flippo, K., Letzring, S., Paffett, M., Ruhl, H., Schreiber, J., Schulze, R.K. & Fernãndez, J.C. (2006). Laser acceleration of quasi-monoenergetic MeV ion beams. Nature 439, 441444.CrossRefGoogle ScholarPubMed
Hoffmann, D.H.H., Weyrich, K., Wahl, H., Gardes, D., Bimbot, R. & Fleurier, C. (1990). Energy loss of heavy ions in a plasma target. Phys. Rev. A 42, 23132321.CrossRefGoogle Scholar
Li, X.M., Shen, B.F., Zha, X.J., Zhang, X.M., Jin, Z.Y. & Wang, F.C. (2006). The energy deposition and propagation of fast ions in ultra-dense plasmas. Acta Phys. Sinica 55, 23132321.Google Scholar
Livingston, M.S. & Beth, H.A. (1937). Nuclear physics C. nuclear dynamics, experimental. Rev. Mod. Phys. 9, 000245.CrossRefGoogle Scholar
Mackinnon, A.J., Patel, P.K., Borghesi, M., Clarke, R.C., Freeman, R.R., Habara, H., Hatchett, S.P. & Hey, D., Hicks, D.G., Kar, S., Key, M.H., King, J.A., Lancaster, K., Neely, D., Nikkro, A., Norreys, P.A., Notley, M.M., Phillips, T.W., Romagnani, L., Snavely, R.A., Stephens, R.B. & Town, R.P.J. (2006). Proton radiography of a laser-driven implosion. Phys. Rev. Lett. 97, 045001.CrossRefGoogle ScholarPubMed
McLaughlin, W.L., Chen, Y.D., Soares, C.G., Miller, A., Van Dyk, G. & Lewis, D.F. (1991). Sensitometry of the response of a new radiochromic film dosimeter to gamma radiation and electron beams. Nucl. Instr. & Meth. Phys. Res. A 302 165176.CrossRefGoogle Scholar
Meyer-ter-vehn, J., Witkowski, S., Bock, R., Hoffmann, D.H.H., Hofmann, I., Muller, R.W., Arnold, R. & Mulser, P. (1990). Accelerator and target studies for heavy ion fusion at the Gesellschaft-fur-Schwerionenforschung. Phys. Fluids B 2, 13131317.CrossRefGoogle Scholar
Mora, P. (2003). Plasma Expansion into a Vacuum. Phys. Rev. Lett. 90, 185002.CrossRefGoogle ScholarPubMed
Morgan, C.A., Griem, H.R. & Elton, R.C. (1994). Spectroscopic measurements of electron density and temperature in polyacetal-capillary-discharge plasmas. Phys. Rev. E 49, 22822291.CrossRefGoogle ScholarPubMed
Nardi, E., Maron, Y. & Hoffmann, D.H.H. (2007). Plasma diagnostics by means of the scattering of electrons and proton beams. Laser Part. Beams 25, 489495.CrossRefGoogle Scholar
Nichiporov, D., Kostjuchenko, V., Puhl, J.M., Bensen, D.L., Desrosiers, M.F., Dich, C.E., McLaughlin, W.L., Kojima, T., Coursey, B.M. & Zink, S. (1995). Investigation of applicability of alanine and radiochromic detectors to dosimetry of proton clinical beams. Appl. Rad. Isotopes 46, 13551362.CrossRefGoogle ScholarPubMed
Ruhl, H., Cowan, T. & Pegoraro, F. (2006). The generation of images of surface structures by laser-accelerated protons. Laser Part. Beams 24, 181184.CrossRefGoogle Scholar
Silva, L.O., Marti, M., Davies, J.R., Fonseca, R.A., Ren, C., Tsung, F.S. & Mori, W.B. (2004). proton shock acceleration in laser-plasma interactions. Phys. Rev. Lett. 92, 015002.CrossRefGoogle ScholarPubMed
Smith, J.H. (1947). Theoretical range-energy values for protons in air and aluminum. Phys. Rev. 71, 3233.CrossRefGoogle Scholar
Snyder, S.C., Crawford, D.M. & Fincke, J.R. (2000). Dependence on the scattering angle of the electron temperature and electron density in Thomson-scattering measurements on an atmospheric-pressure plasma jet. Phys. Rev. E 61, 19201924.CrossRefGoogle Scholar
Wetzler, H., Suss, W., Stockl, C., Tauschwitz, A. & Hoffmann, D.H.H. (1997). Density diagnostics of an argon plasma by heavy ion beams and spectroscopy. Laser Part. Beams 15, 449459.CrossRefGoogle Scholar
Willi, O., Toncian, T., Borghesi, M., Fuchs, J., D'Humieres, E., Antici, P., Audebert, P., Brambrink, E., Cecchetti, C., Pipahl, A. & Romagnani, L. (2007). Laser triggered micro-lens for focusing and energy selection of MeV protons. Laser Part. Beams 25, 7177.CrossRefGoogle Scholar
Xiao, T.Y., Yu, S.G. & Wang, Y.F. (2003). The Numerical Computation for the Inverse Problems. (Shi, Z.C. and Li, Y.S.), Beijing: The Science Press of China.Google Scholar
Yin, L., Albright, B.J., Hegelich, B.M. & Fernandez, J.C. (2006). GeV laser ion acceleration from ultrathin targets: The laser break-out afterburner. Laser Part. Beams 24, 291298.CrossRefGoogle Scholar