Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T04:11:35.267Z Has data issue: false hasContentIssue false

Idealized slab plasma approach for the study of warm dense matter

Published online by Cambridge University Press:  05 December 2005

A. NG
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California Department of Physics and Astronomy, University of British Columbia, Vancouver, B.C., Canada
T. AO
Affiliation:
Department of Physics and Astronomy, University of British Columbia, Vancouver, B.C., Canada
F. PERROT
Affiliation:
CEA, Bruyeres, Le Chatel Cedex, France
M.W.C. DHARMA-WARDANA
Affiliation:
National Research Council, Ottawa, Ontario, Canada
M.E. FOORD
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California

Abstract

Recently, warm dense matter has emerged as an interdisciplinary field that draws increasing interest in plasma physics, condensed matter physics, high pressure science, astrophysics, inertial confinement fusion, as well as material science under extreme conditions. To allow the study of well-defined warm dense matter states, we introduced the concept of idealized slab plasma (ISP) that can be realized in the laboratory via (1) the isochoric heating of a solid and (2) the propagation of a shock wave in a solid. The application of this concept provides new means for probing AC conductivity, equation of state, ionization, and opacity. These approaches are presented here using results derived from numerical simulations.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ao, T., Chiu, G., Forsman, A. & Ng, A. (2000). Optical signatures of a shock wave emerging from a metallic free surface. In Shock Waves in Condensed Matter. Vol. 505, pp. 971974 (Furnish, M.D., Chhabildas, L.C. & Hixon, R., Eds.). St. Louis: American Institute of Physics.
Bezzerides, B., Jones, R.D. & Forslund, D.W. (1982). Plasma mechanism for ultraviolet harmonic radiation due to intense CO2 light. Phys. Rev. Lett. 49, 202205.Google Scholar
Boehly, T.R., Delettrez, J.A., Knauer, J.P., Meyerhofer, D.D., Yaakobi, B., Town, R.P.J. & Hoarty, D. (2001). Effect of shock heating on the stability of laser-driven targets. Phys. Rev. Lett. 87, 145003.Google Scholar
Carman, R.L., Rhodes, C.K. & Benjamin, R.F. (1981). Observation of harmonics in the visible and ultraviolet created in CO2-laser-produced plasmas. Phys. Rev. A 24, 26492663.Google Scholar
Celliers, P. & Ng, A. (1993). Optical probing of hot expanded states produced by shock release. Phys. Rev. E 47, 35473565.Google Scholar
Celliers, P. (1987). Shock waves in fused silica. Ph.D. Thesis, University of British Columbia.
Celliers, P., Ng, A., Xu, G. & Forsman, A. (1992). Thermal equilibration in a shock wave. Phys. Rev. Lett. 68, 23052308.Google Scholar
Chiu, G. & Ng, A. (1999). Pressure ionization in dense plasmas. Phys. Rev. E 59, 10241032.Google Scholar
Constantin, C., Dewald, E., Niemann, C., Hoffman, D.H.H., Udrea, S., Varentsov, D., Jacoby, J., Funk, U.N., Neuner, U. & Tauschwitz, A. (2004). Cold compression of solid matter by intense heavy-ion-beam-generated pressure waves. Laser Part. Beams 22, 5963.Google Scholar
Da Silva, L.B., Ng, A., Godwal, B.K., Chiu, G., Cottet, F., Richardson, M.C., Jaanimagi, P.A. & Lee, Y.T. (1989). Shock-induced shifts in the aluminum K photoabsorption edge. Phys. Rev. Lett. 62, 16231626.Google Scholar
Da Silva, L.B., Celliers, P., Collins, G.W., Budil, K.S., Holmes, N.C., Barbee, T.W., Jr., Hammel, B.A., Kilkenny, J.D., Wallace, R.J., Ross, M., Cauble, R., Ng, A. & Chiu, G. (1997). Absolute equation of state measurements on shocked liquid deuterium up to 200 GPa (2 Mbar). Phys. Rev. Lett. 78, 483486.Google Scholar
Ditmire, T., Crane, J.K., Nguyen, H., DaSilva, L.B. & Perry, M.D. (1995). Energy-yield and conversion-efficiency measurements of high-order harmonic radiation. Phys. Rev. A 51, R902R905.Google Scholar
Dittrich, T.R., Haan, S.W., Marinak, M.M., Pollaine, S.M., Hinkel, D.E., Munro, D.H., Verdon, C.P., Strobel, G.L., McEachern, R., Cook, R.C., Roberts, C.C., Wilson, D.C., Bradley, P.A., Foreman, L.R. & Varnum, W.S. (1999). Review of indirect-drive ignition design options for the National Ignition Facility. Phys. Plasmas 6, 21642170.Google Scholar
Donnelly, T.D., Ditmire, T., Neuman, K., Perry, M.D. & Falcone, R.W. (1996). High-order harmonic generation in atom clusters. Phys. Rev. Lett. 76, 24722475.Google Scholar
Forsman, A., Ng, A., Chiu, G. & More, R.M. (1998). Interaction of femtosecond laser pulses with ultrathin foils. Phys. Rev. E 58, R1248R1251.Google Scholar
Geindre, J.P., Audebert, P., Rousse, A., Falliès, F., Gauthier, J.C., Mysyrowicz, A., Dos Santos, A., Hamoniaux, G. & Antonetti, A. (1994). Frequency-domain interferometer for measuring the phase and amplitude of a femtosecond pulse probing a laser-produced plasma. Opt. Lett. 19, 19971999.Google Scholar
Griem, H.R. (1968). Semiempirical formulas for the electron-impact widths and shifts of isolated ion lines in plasmas. Phys. Rev. 165, 258266.Google Scholar
Henke, B.L., Lee, P., Tanaka, T.J., Shimabukuro, R.L. & Fujikawa, B.K. (1982). Low-energy x-ray interaction coefficients: photoabsorption, scattering and reflection. At. Data Nucl. Data. Table 27, 1.Google Scholar
Holian, K.S. (1984). Report No. LA-10160-MS UC-34. Los Alamos, NM: Los Alamos National Laboratory.
Ichimaru, S. (1982). Strongly coupled plasmas: high-density classical plasmas and degenerate electron liquids. Rev. Mod. Phys. 54, 10171059.Google Scholar
Knudson, M.D., Hanson, D.L., Bailey, J.E., Hall, C.A., Asay, J.R. & Anderson, W.W. (2001). Equation of State Measurements in Liquid Deuterium to 70 GPa. Phys. Rev. Lett. 87, 225501.Google Scholar
Kozyreva, A., Basko, M., Rosmej, F.B., Schlegel, T., Tauschwitz, A. & Hoffmann, D.H.H. (2003). Dynamic confinement of targets heated quasi-isochorically with heavy ion beams. Phys. Rev. E 68, 056406.Google Scholar
L'Huillier, A. & Balcou, P. (1993). High order harmonic generation in rare gases with a 1-ps 1053-nm laser. Phys. Rev. Lett. 70, 774777.Google Scholar
Lee, R.W., Baldis, H.A., Cauble, R.C., Landen, O.L., Wark, J.S., Ng, A., Rose, S.J., Lewis, C., Riley, D., Gauthier, J.-C. & Audebert, P. (2002). Plasma-based studies with intense x-ray and particle beam sources. Laser Part. Beams 20, 527536.Google Scholar
Lee, Y.T. & More, R.M. (1984). An electron conductivity model for dense plasmas. Phys. Fluids 27, 12731286.Google Scholar
Liang, Y., August, S., Chin, S.L., Beaudoin, Y. & Chaker, M. (1994). High harmonic generation in atomic and diatomic molecular gases using intense picosecond laser pulses—a comparison. J. Phys. B: At. Mol. Opt. Phys. 27, 51195130.Google Scholar
Macklin, J.J., Kmetec, J.D. & Gordon, C.L. (1993). High-order harmonic generation using intense femtosecond pulses. Phys. Rev. Lett. 70, 766769.Google Scholar
More, R.M., Warren, K.H., Young, D.A. & Zimmerman, G.B. (1988). A new quotidian equation of state (QEOS) for hot dense matter. Phys. Fluids 31, 30593078.Google Scholar
More, R.M. (1991). In Physics of Laser Plasma (Rubenchik, A. & Witkowski, S., Eds.) Vol. 3. Amsterdam: North-Holland.
Perrot, F. & Dharma–wardana, M.W.C. (1995). Photoabsorption K edge of shock compressed aluminum. Phys. Rev. Lett. 71, 797800Google Scholar
Perrot, F. & Dharma–wardana, M.W.C. (1993). Equation of state and transport properties of an interacting multispecies plasma: Application to a multiply ionized Al plasma. Phys. Rev. E 52, 53525367.Google Scholar
Saumon, D. et al. (2000). Modeling pressure-ionization of hydrogen in the context of astrophysics. High Pressure Res. 16, 331.Google Scholar
Stewart, J.C. & Pyatt, K.D. (1966). Lowering of ionization potentials in plasmas. Astrophys. J. 144, 1203.Google Scholar
Varentsov, D., Spiller, P., Tahir, N.A., Hoffmann, D.H.H., Constantin, C., Dewald, E., Jacoby, J., Lomonosov, I.V., Neuner, U., Shutov, A., Wieser, J., Udrea, S. & Bock, R. (2002). Energy loss dynamics of intense heavy ion beams interacting with solid targets. Laser Part. Beams 20, 485491.Google Scholar
Widmann, K., Guethlein, G., Foord, M.E., Cauble, R.C., Patterson, F.G., Price, D.F., Rogers, F.J., Springer, P.T., Stewart, R.E., Ng, A., Ao, T. & Forsman, A. (2001). Interferometric investigation of femtosecond laser-heated expanded states. Phys. Plasmas 8, 38693872.Google Scholar
Zeldovich, Y.B. & Raizer, Y.P. (1967). Physics of Shock Waves and High Temperature Hydrodynamic Phenomena. New York: Academic Press.