Published online by Cambridge University Press: 07 June 2005
Very high plasma densities can be obtained at the end of the implosion phase in inertial fusion targets, particularly in the so-called fast-ignition scheme (Tabak et al., 1994; Mulser & Bauer, 2004), where a central hot spark is not needed at all. By properly tailoring the fuel compression stage, degenerate states can be reached (Azechi et al., 1991; Nakai et al., 1991; McCory, 1998). In that case, most of the relevant energy transfer mechanisms involving electrons are affected (Honrubia & Tikhonchuk, 2004; Bibi & Matte, 2004; Bibi et al., 2004). For instance, bremsstrahlung emission is highly suppressed (Eliezer et al., 2003). In fact, a low ignition-temperature regime appears at very high plasma densities, due to radiation leakage reduction (León et al., 2001). Stopping power and ion-electron coulomb collisions are also changed in this case, which are important mechanisms to trigger ignition by the incoming fast jet, and to launch the fusion wave from the igniting region into the colder, degenerate plasma. All these points are reviewed in this paper. Although degenerate states would not be easy to obtain by target implosion, they present a very interesting upper limit that deserves more attention in order to complete the understanding on the different domains for inertial confinement fusion.