Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T19:30:27.177Z Has data issue: false hasContentIssue false

Ion acceleration with ultrafast laser driven water droplets

Published online by Cambridge University Press:  30 August 2005

M. SCHNÜRER
Affiliation:
Max-Born-Institut, Berlin, Germany
S. TER-AVETISYAN
Affiliation:
Max-Born-Institut, Berlin, Germany
S. BUSCH
Affiliation:
Max-Born-Institut, Berlin, Germany
E. RISSE
Affiliation:
Max-Born-Institut, Berlin, Germany
M.P. KALACHNIKOV
Affiliation:
Max-Born-Institut, Berlin, Germany
W. SANDNER
Affiliation:
Max-Born-Institut, Berlin, Germany
P.V. NICKLES
Affiliation:
Max-Born-Institut, Berlin, Germany

Abstract

Small water droplets (20 micron in diameter) have been exposed to intense (∼ 1019 W/cm2) laser pulses in order to study ultrashort (∼ 35 fs) laser pulse driven ion acceleration. Ion emission spectra registered simultaneously in forward and backward direction in respect to the incident laser beam carry similar integral ion energy but show different ion cutoff energies. With simple model estimations on basis of the confined and spherical geometry of the droplet-target, we inferred acceleration field strengths of about (0.7–2) MV/μm. Up to 9% of the incident laser energy is converted to kinetic energy of ions, which have been accelerated to energies above 100 keV and up to 1.5 MeV. A laser pedestal at an intensity of about 10−7 of the peak intensity at 1–2 ns in front of the pulse peak still limits the achievable cutoff energies of emitted protons from the droplet. The observed increase of cutoff energies with an enhanced temporal contrast of the laser pulse is elucidated within a simple acceleration model.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper was presented at the 28th ECLIM conference in Rome, Italy.

References

REFERENCES

Bauer, D. (2003). Plasma formation through field ionization in intense laser–matter interaction. Laser Part. Beams 21, 489495.Google Scholar
Borghesi, M., Audebert, P., Bulanov, S.V., Cowan, T., Fuchs, J., Gauthier, J.C., Mackinnon, A.J., Patel, P.K., Pretzler, G., Romagnani, L., Schiavi, A., Toncian, T. & Willi, O. (2005). High-intensity laser-plasma interaction studies employing laser-driven proton probes. Laser Part. Beams 23, 291295.Google Scholar
Borghesi, M., Bulanov, S., Campbell, D.H., Clarke, R.J., Esirkepov, T.Zh., Galimberti, M., Gizzi, L.A., MacKinnon, A.J., Naumova, N.M., Pegoraro, F., Ruhl, H., Schiavi, A. & Willi, O. (2001). Macroscopic evidence of soliton formation in multiterawatt laser-plasma interaction. Phys. Rev. Lett. 88, 135002.Google Scholar
Busch, S., Schnürer, M., Kalashnikov, M., Schönnagel, H., Stiel, H., Nickles, P.V., Sandner, W., Ter-Avetisyan, S., Karpov, V. & Vogt, U. (2003). Ion acceleration with ultrafast lasers. Appl. Phys. Lett. 82, 33543356.Google Scholar
Busch, S., Shiryaev, O., Ter-Avetisyan, S., Schnürer, M., Nickles, P.V. & Sandner, W. (2004). Shape of ion energy spectra in ultra-short and intense laser–matter interaction. Appl. Phys. B 78, 911914.Google Scholar
Bychenkov, V.Yu., Novikov, V.N., Batani, D., Tikhonchuk, V.T. & Bochkarev, S.G. (2004). Ion acceleration in expanding multispecies plasmas. Phys. Plasmas 11, 32423250.Google Scholar
Clark, E.L., Krushelnick, K., Zepf, M., Beg, F.N., Tatarakis, M., Machacek, A., Santala, M.I.K., Watts, I., Norreys, P.A. & Dangor, A.E. (2000). Eergetic heavy-ion and proton generation from ultraintense laser-plasma interactions with solids. Phys. Rev. Lett. 85, 16541657.Google Scholar
Deutsch, C. (2003). Transport of megaelectron volt protons for fast ignition. Laser Part. Beams 21, 3335.Google Scholar
Dong, Q.L., Sheng, Z.-M., Yu, M.Y. & Zhang, J. (2003). Optimization of ion acceleration in the interaction of intense femtosecond laser pulses with ultrathin foils. Phys. Rev. E 68, 026408.Google Scholar
Düsterer, S. (2003). Laser-Plasma Interaction in Droplet-Targets. PhD Thesis. Jena: Friedrick-Schiller-University.
Hatchett, S.P., Brown, C.G., Cowan, T.E., Henry, E.A., Johnson, J.S., Key, M.H., Koch, J.A., Langdon, A.B., Lasinski, B.F., Lee, R.W., Mackinnon, A.J., Pennington, D.M., Perry, M.D., Phillips, T.W., Roth, M., Sangster, T.C., Singh, M.S., Snavely, R.A., Stoyer, M.A., Wilks, S.C. & Yasuike, K. (2000). Electron, photon, and ion beams from the relativistic interaction of petawatt laser pulses with solid targets. Phys. Plasmas 7, 20762082.Google Scholar
Hegelich, M., Karsch, S., Pretzler, G., Habs, D., Witte, K., Guenther, W., Allen, M., Blazevic, A., Fuchs, J., Gauthier, J.C., Geissel, M., Audebert, P., Cowan, T. & Roth, M. (2002). MeV ion jets from short-pulse-laser interaction with thin foils. Phys. Rev. Lett. 89, 085002.Google Scholar
Hemberg, O., Hansson, B.A.M., Berglund, M. & Hertz, H.M. (2000). Stability of droplet-target laser-plasma soft X-ray sources. J. Appl. Phys. 88, 54215425.Google Scholar
Kalachnikov, M.P., Karpov, V., Schonnagel, H. & Sandner, W. (2002). 100-Terawatt titanium-sapphire laser system. Laser Phys. 12, 368.Google Scholar
Kalachnikov, M.P., Risse, E., Schönnagel, H. & Sandner, W. (2005). Double chirped-pulse-amplification laser: A way to clean pulses temporally. Optics Lett. 30, 923.Google Scholar
Kaluza, M., Schreiber, J., Santala, M.I.K., Tsakiris, G.D., Eidmann, K., Meyer-ter-Vehn, J. & Witte, K. (2004). Influence of the laser prepulse on proton acceleration in thin-foil experiments. Phys. Rev. Lett. 93, 045003.Google Scholar
Karsch, S., Düsterer, S., Schwoerer, H., Ewald, F., Habs, D., Hegelich, M., Pretzler, G., Pukhov, A., Witte, K. & Sauerbrey, R. (2003). High-intensity laser induced ion acceleration from heavy-water droplets. Phys. Rev. Lett. 91, 015001.Google Scholar
Lichters, R., Pfund, R.E.W. & Meyer-ter-Vehn, J. (1997). A parallel one-dimensional relativistic electromagnetic particle-in-cell code for simulating laser-plasma-interaction. Report MPQ 255. Berlin: Max-Planck-Institut für Quantenoptik, Garching.
Mackinnon, A.J., Sentoku, Y., Patel, P.K., Price, D.W., Hatchett, S., Key, M.H., Andersen, C., Snavely, R. & Freeman, R.R. (2002). Enhancement of proton acceleration by hot-electron recirculation in thin foils irradiated by ultraintense laser pulses. Phys. Rev. Lett. 88, 215006.Google Scholar
Magunov, I., Faenov, A.Ya., Skobelev, I.Yu., Pikuz, T.A., Dobosz, S., Schmidt, M., Perdrix, M., Meynadier, P., Gobert, O., Normand, D., Stenz, C., Bagnoud, V., Blasco, F., Roche, J.R., Salin, F. & Sharkov, B.Yu. (2003). X-ray spectra of fast ions generated from clusters by ultrashort laser pulses. Laser Part. Beams 21, 7379.Google Scholar
Maksimchuk, A., Gu, S., Flippo, K., Umstadter, D. & Bychenkov, V.Yu. (2000). Forward ion acceleration in thin films driven by a high-intensity laser. Phys. Rev. Lett. 84, 41084111.Google Scholar
Malka, V. (2002). Charged particle source produced by laser–plasma interaction in the relativistic regime. Laser Part. Beams 20, 217221.Google Scholar
Mora, P. (2003). Plasma expansion into a vacuum. Phys. Rev. Lett. 90, 185002.Google Scholar
Mourou, G.A., Barty, C.P.J. & Perry, M.D. (1998). Ultrahigh-intensity lasers: Physics of the extreme on a tabletop. Phys. Today 51, 2228.Google Scholar
Nakajima, K. (2000). Particle acceleration by ultraintense laser interactions with beams and plasmas. Laser Part. Beams 18, 519528.Google Scholar
Nemoto, K., Maksimchuk, A., Banerjee, S., Flippo, K., Mourou, G., Umstadter, D. & Bychenkov, V.Yu. (2001). Laser-triggered ion acceleration and table top isotope production. Appl. Phys. Lett. 78, 595597.Google Scholar
Santala, M.I.K., Zepf, M., Beg, F.N., Clark, E.L., Dangor, A.E., Krushelnick, K., Tatarakis, M., Watts, I., Ledingham, K.W.D., McCanny, T., Spencer, I., Machacek, A.C., Allott, R., Clarke, R.J. & Norreys, P.A. (2001). Production of radioactive nuclides by energetic protons generated from intense laser-plasma interactions. Appl. Phys. Lett. 78, 1921.Google Scholar
Schnürer, M., Hilscher, D., Jahnke, U., Ter-Avetisyan, S., Busch, S., Kalachnikov, M., Stiel, H., Nickles, P.V. & Sandner, W. (2004a). Explosion characteristics of intense femtosecond-laser-driven water droplets. Phys. Rev. E 70, 056401.Google Scholar
Schnürer, M., Nolte, R., Rousse, A., Grillon, G., Cheriaux, G., Kalachnikov, M.P., Nickles, P.V. & Sandner, W. (2000b). Dosimetric measurements of electron and photon yields from solid targets irradiated with 30 fs pulses from a 14 TW laser. Phys. Rev. E 61, 43944401.Google Scholar
Spence, I., Ledingham, K.W.D., McKenna, P., McCanny, T., Singhal, R.P., Foster, P.S., Neely, D., Langley, A.J., Divall, E.J., Hooker, C.J., Clarke, R.J., Norreys, P.A., Clark, E.L., Krushelnick, K. & Davies, J.R. (2003). Experimental study of proton emission from 60-fs, 200-mJ high-repetition-rate tabletop-laser pulses interacting with solid targets. Phys. Rev. E 67, 046402.Google Scholar
Strickland, D. & Mourou, G. (1985). Compression of amplified chirped optical pulses. Opt. Commun. 56, 219221.Google Scholar
Ter-Avetisyan, S., Schnürer, M., Busch, S., Risse, E., Nickles, P.V. & Sandner, W. (2004). Spectral dips in ion emission emerging from ultrashort laser-driven plasmas. Phys. Rev. Lett. 93, 155006.Google Scholar
Wilks, S.C., Langdon, A B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., MacKinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser-sold interactions. Phys. Plasmas 8, 542549.Google Scholar
Wickens, L.M., Allen, J.E. & Rumsby, P.T. (1978). Ion emission from laser-produced plasmas with two electron temperatures. Phys. Rev. Lett. 41, 243246.Google Scholar
Yamagiwa, M. & Koga, J. (1999). MeV ion generation by an ultra-intense short-pulse laser: application to positron emitting radionuclide production. J. Phys. D: Appl. Phys. 32, 25262528.Google Scholar